A284949
Triangle read by rows: T(n,k) = number of reversible string structures of length n using exactly k different symbols.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 9, 15, 6, 1, 1, 19, 50, 37, 9, 1, 1, 35, 160, 183, 76, 12, 1, 1, 71, 502, 877, 542, 142, 16, 1, 1, 135, 1545, 3930, 3523, 1346, 242, 20, 1, 1, 271, 4730, 17185, 21393, 11511, 2980, 390, 25, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 5, 4, 1;
1, 9, 15, 6, 1;
1, 19, 50, 37, 9, 1;
1, 35, 160, 183, 76, 12, 1;
1, 71, 502, 877, 542, 142, 16, 1;
1, 135, 1545, 3930, 3523, 1346, 242, 20, 1;
1, 271, 4730, 17185, 21393, 11511, 2980, 390, 25, 1;
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
(* achiral color patterns for row of n colors containing k different colors *)
Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[0==n, 1, 0], 1, If[n>0, 1, 0],
(* else *) _, If[OddQ[n],
Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1] + 2^i Ach[n-2-2i, k-2]),
{i, 0, n/2-1}]]]
Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 15}, {k, 1, n}] // Flatten
(* Robert A. Russell, Feb 10 2018 *)
-
\\ see A056391 for Polya enumeration functions
T(n,k) = NonequivalentStructsExactly(ReversiblePerms(n), k); \\ Andrew Howroyd, Oct 14 2017
-
\\ Ach is A304972 as square matrix.
Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M}
T(n)={(matrix(n, n, i, k, stirling(i, k, 2)) + Ach(n))/2}
{ my(A=T(10)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 18 2019
A056325
Number of reversible string structures with n beads using a maximum of six different colors.
Original entry on oeis.org
1, 1, 2, 4, 11, 32, 117, 467, 2135, 10480, 55091, 301633, 1704115, 9819216, 57365191, 338134521, 2005134639, 11937364184, 71254895955, 426063226937, 2550552314219, 15280103807200, 91588104196415, 549159428968825
Offset: 0
For a(4)=11, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABCA, ABBC, and ABCD. The 4 chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- Colin Barker, Table of n, a(n) for n = 0..1000
- Allan Bickle, How to Count k-Paths, J. Integer Sequences, 25 (2022) Article 22.5.6.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- J. Eckhoff, Extremal interval graphs, J. Graph Theory 17 1 (1993), 117-127.
- L. Markenzon, O. Vernet, and P. R. da Costa Pereira, A clique-difference encoding scheme for labelled k-path graphs, Discrete Appl. Math. 156 (2008), 3216-3222.
- Index entries for linear recurrences with constant coefficients, signature (16,-84,84,685,-2140,180,7200,-8244,-4176,11664,-5184).
The sequences above converge to
A103293(n+1).
-
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k=6; Table[Sum[StirlingS2[n,j]+Ach[n,j],{j,0,k}]/2,{n,0,40}] (* Robert A. Russell, Oct 28 2018 *)
LinearRecurrence[{16, -84, 84, 685, -2140, 180, 7200, -8244, -4176, 11664, -5184}, {1, 1, 2, 4, 11, 32, 117, 467, 2135, 10480, 55091, 301633}, 40] (* Robert A. Russell, Oct 28 2018 *)
-
Vec((1 - 15*x + 70*x^2 - 28*x^3 - 654*x^4 + 1479*x^5 + 783*x^6 - 5481*x^7 + 3512*x^8 + 4640*x^9 - 5922*x^10 + 1530*x^11) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 6*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)) + O(x^30)) \\ Colin Barker, Apr 15 2020
A320529
Number of chiral pairs of color patterns (set partitions) in a row of length n using exactly 6 colors (subsets).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 9, 124, 1300, 11316, 89513, 660978, 4658738, 31711638, 210332227, 1367416232, 8752773288, 55343303064, 346540112781, 2153037307846, 13292835205606, 81652655795106, 499484899831775, 3045117929546220, 18513208314957356, 112297592929814292, 679900657841661529, 4110073054119135194, 24814158520762637754
Offset: 1
For a(7)=9, the chiral pairs are AABCDEF-ABCDEFF, ABACDEF-ABCDEFE, ABCADEF-ABCDEFD, ABCDAEF-ABCDEFC, ABCDEAF-ABCDEFB, ABBCDEF-ABCDEEF, ABCBDEF-ABCDEDF, ABCDBEF-ABCDECF, and ABCCDEF-ABCDDEF.
- Index entries for linear recurrences with constant coefficients, signature (21, -159, 399, 1085, -8085, 9555, 34125, -98644, 5544, 253764, -248724, -136800, 317520, -129600).
-
m:=30; R:=PowerSeriesRing(Integers(), m); [0,0,0,0,0,0] cat Coefficients(R!((x^6/(&*[1-k*x: k in [1..6]]) - x^6*(1+x)*(1-4*x^2)*(1+2*x-x^2-4*x^3)/(&*[1-k*x^2: k in [1..6]]) )/2)); // G. C. Greubel, Oct 19 2018
-
k=6; Table[(StirlingS2[n,k] - If[EvenQ[n], StirlingS2[n/2+3,6] - 3StirlingS2[n/2+2,6] - 8StirlingS2[n/2+1,6] + 16StirlingS2[n/2,6], 3StirlingS2[(n+5)/2,6] - 17StirlingS2[(n+3)/2,6] + 20StirlingS2[(n+1)/2,6]])/2, {n,30}]
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k = 6; Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 30}]
LinearRecurrence[{21, -159, 399, 1085, -8085, 9555, 34125, -98644, 5544, 253764, -248724, -136800, 317520, -129600}, {0, 0, 0, 0, 0, 0, 9, 124, 1300, 11316, 89513, 660978, 4658738, 31711638}, 30]
-
x='x+O('x^30); concat(vector(6), Vec((x^6/prod(k=1,6, 1-k*x) - x^6* (1+x)*(1-4*x^2)*(1+2*x-x^2-4*x^3)/prod(k=1,6,(1-k*x^2)))/2)) \\ G. C. Greubel, Oct 19 2018
Showing 1-3 of 3 results.
Comments