A320750 Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an unoriented row of length n using k or fewer colors (subsets).
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 6, 1, 1, 2, 4, 10, 10, 1, 1, 2, 4, 11, 25, 20, 1, 1, 2, 4, 11, 31, 70, 36, 1, 1, 2, 4, 11, 32, 107, 196, 72, 1, 1, 2, 4, 11, 32, 116, 379, 574, 136, 1, 1, 2, 4, 11, 32, 117, 455, 1451, 1681, 272, 1
Offset: 1
Examples
Array begins with T(1,1): 1 1 1 1 1 1 1 1 1 1 1 ... 1 2 2 2 2 2 2 2 2 2 2 ... 1 3 4 4 4 4 4 4 4 4 4 ... 1 6 10 11 11 11 11 11 11 11 11 ... 1 10 25 31 32 32 32 32 32 32 32 ... 1 20 70 107 116 117 117 117 117 117 117 ... 1 36 196 379 455 467 468 468 468 468 468 ... 1 72 574 1451 1993 2135 2151 2152 2152 2152 2152 ... 1 136 1681 5611 9134 10480 10722 10742 10743 10743 10743 ... 1 272 5002 22187 43580 55091 58071 58461 58486 58487 58487 ... 1 528 14884 87979 211659 301633 333774 339764 340359 340389 340390 ... For T(4,3)=10, the patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, AAAB, AABA, AABC, ABAC, the last four being chiral with partners ABBB, ABAA, ABCC, and ABCB.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
Links
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
- Allan Bickle, How to Count k-Paths, J. Integer Sequences, 25 (2022) Article 22.5.6.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- J. Eckhoff, Extremal interval graphs, J. Graph Theory 17 1 (1993), 117-127.
- L. Markenzon, O. Vernet, and P. R. da Costa Pereira, A clique-difference encoding scheme for labelled k-path graphs, Discrete Appl. Math. 156 (2008), 3216-3222.
Crossrefs
Programs
-
Mathematica
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *) Table[Sum[StirlingS2[n,j] + Ach[n,j], {j,k-n+1}]/2, {k,15}, {n,k}] // Flatten
Formula
T(n,k) = Sum_{j=1..k} (S2(n,j) + Ach(n,j))/2, where S2 is the Stirling subset number A008277 and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
T(n,k) = (A278984(k,n) + A305749(n,k)) / 2 = A278984(k,n) - A320751(n,k) = A320751(n,k) + A305749(n,k).
T(n,k) = Sum_{j=1..k} A284949(n,j).
Comments