cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A056273 Word structures of length n using a 6-ary alphabet.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 876, 4111, 20648, 109299, 601492, 3403127, 19628064, 114700315, 676207628, 4010090463, 23874362200, 142508723651, 852124263684, 5101098232519, 30560194493456, 183176170057707, 1098318779272060, 6586964947803695, 39510014478620232, 237013033135668883
Offset: 0

Views

Author

Keywords

Comments

Set partitions of the n-set into at most 6 parts; also restricted growth strings (RGS) with six letters s(1),s(2),...,s(6) where the first occurrence of s(j) precedes the first occurrence of s(k) for all j < k. - Joerg Arndt, Jul 06 2011
Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.
Density of regular language L over {1,2,3,4,5,6}^* (i.e., number of strings of length n in L) described by regular expression with c=6: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*) where Sum stands for union and Product for concatenation. - Nelma Moreira, Oct 10 2004
Word structures of length n using an N-ary alphabet are generated by taking M^n* the vector [(N 1's),0,0,0,...], leftmost column term = a(n+1). In the case of A056273, the vector = [1,1,1,1,1,1,0,0,0,...]. As the vector approaches all 1's, the leftmost column terms approach A000110, the Bell sequence. - Gary W. Adamson, Jun 23 2011
From Gary W. Adamson, Jul 06 2011: (Start)
Construct an infinite array of sequences representing word structures of length n using an N-ary alphabet as follows:
.
1, 1, 1, 1, 1, 1, 1, 1, ...; N=1, A000012
1, 2, 4, 8, 16, 32, 64, 128, ...; N=2, A000079
1, 2, 5, 14, 41, 122, 365, 1094, ...; N=3, A007051
1, 2, 5, 15, 51, 187, 715, 2795, ...; N=4, A007581
1, 2, 5, 15, 52, 202, 855, 3845, ...; N=5, A056272
1, 2, 5, 15, 52, 203, 876, 4111, ...; N=6, A056273
...
The sequences tend to A000110. Finite differences of columns reinterpreted as rows generate A008277 as a triangle: (1; 1,1; 1,3,1; 1,7,6,1; ...). (End)

Examples

			For a(4) = 15, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD; the 8 chiral patterns are the 4 pairs AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

A row of the array in A278984 and A320955.
Cf. A056325 (unoriented), A320936 (chiral), A305752 (chiral).

Programs

  • GAP
    List([0..25],n->Sum([0..6],k->Stirling2(n,k))); # Muniru A Asiru, Oct 30 2018
    
  • Magma
    [(&+[StirlingSecond(n, i): i in [0..6]]): n in [0..30]]; // Vincenzo Librandi, Nov 07 2018
  • Maple
    egf := (265+264*exp(x)+135*exp(x*2)+40*exp(x*3)+15*exp(x*4)+exp(6*x))/6!:
    ser := series(egf,x,30): seq(n!*coeff(ser,x,n),n=0..22); # Peter Luschny, Nov 06 2018
  • Mathematica
    Table[Sum[StirlingS2[n,k],{k,0,6}],{n,0,30}] (* or *) LinearRecurrence[ {16,-95,260,-324,144},{1,1,2,5,15,52},30] (* Harvey P. Dale, Jun 05 2015 *)
  • PARI
    Vec((1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-6*x)) + O(x^30)) \\ Michel Marcus, Nov 07 2018
    

Formula

a(n) = Sum_{k=0..6} Stirling2(n, k).
For n > 0, a(n) = (1/6!)*(6^n + 15*4^n + 40*3^n + 135*2^n + 264). - Vladeta Jovovic, Aug 17 2003
From Nelma Moreira, Oct 10 2004: (Start)
For n > 0 and c = 6:
a(n) = (c^n)/c! + Sum_{k=0..c-2} ((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))).
a(n) = Sum_{k=1..c} (g(k, c)*k^n) where g(1, 1) = 1; g(1, c) = g(1, c-1) + ((-1)^(c-1))/(c-1)! if c>1. For 2 <= k <= c: g(k, c) = g(k-1, c-1)/k if c>1. (End)
G.f.: (1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2x)*(1-3x)*(1-4x)*(1-6x)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009 [corrected by R. J. Mathar, Sep 16 2009] [Adapted to offset 0 by Robert A. Russell, Nov 06 2018]
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=6. - Robert A. Russell, Apr 25 2018
E.g.f.: (265 + 264*exp(x) + 135*exp(x*2) + 40*exp(x*3) + 15*exp(x*4) + exp(6*x))/6!. - Peter Luschny, Nov 06 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 06 2018

A320956 a(n) = A000110(n) * A000111(n). The exponential limit of sec + tan. Row sums of A373428.

Original entry on oeis.org

1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, 167822592, 5859172975, 240072637440, 11388362495705, 618357843791872, 38057876106154882, 2632817442236631040, 203225803724876875315, 17390464322078045896704, 1640312648221489789841119, 169667967895669459925991424
Offset: 0

Views

Author

Peter Luschny, Nov 07 2018

Keywords

Comments

We say that the sequence S is the exponential limit of the function f relative to the kernel K if and only if the exponential generating functions
egf(n) = Sum_{k=0..n} K(n, k)*f(x*(n-k)) generate a family of sequences
T(n) = k -> (k!/n!)*[x^k] egf(n) which converge to S. Convergence here means that for every fixed k the terms T(n)(k) differ from S(k) only for finitely many indices.
The paradigmatic example is to set f(x) = exp(x), K(n, k) = !k*binomial(n, k) (!n is the subfactorial of n) and obtain for S the Bell numbers. This example is set forth in A320955.
Let D(f)(x) represent the derivative of f(x) with respect to x and (D^(n))(f) the n-th derivative of f. Then the exponential limit of f is B(n)*((D^(n))(f))(0) where B(n) is the n-th Bell number: ExpLim(f) = f(0), (D(f))(0), 2*((D^(2))(f))(0), 5*((D^(3))(f))(0), 15*((D^(4))(f))(0), 52*((D^(5))(f))(0), ... Since exp is a fixed point of D and exp(0) = 1 we have the identity ExpLim(exp)[n] = B(n). Similarly ExpLim(sin)[n] = B(n)*mod(n,2)*(-1)^binomial(n,2).
If we set f = sec + tan and K(n, k) = !k*binomial(n, k) the exponential limit is this sequence, a(n).

Examples

			Illustration of the convergence:
  [0] 1, 0, 0,  0,  0,   0,     0,      0,       0, ... A000007
  [1] 1, 1, 1,  2,  5,  16,    61,    272,    1385, ... A000111
  [2] 1, 1, 2,  8, 40, 256,  1952,  17408,  177280, ... A000828
  [3] 1, 1, 2, 10, 70, 656,  7442,  99280, 1515190, ... A320957
  [4] 1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, ... A321394
  [5] 1, 1, 2, 10, 75, 832, 12322, 232560, 5325325, ...
  [6] 1, 1, 2, 10, 75, 832, 12383, 238272, 5693735, ...
  [7] 1, 1, 2, 10, 75, 832, 12383, 238544, 5732515, ...
  [8] 1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, ...
		

Crossrefs

Cf. A000111 (n=1), A000828 (n=2), A320957 (n=3), A321394 (n=4).
Cf. A320955 (exp), A320962 (log(x+1)), this sequence (sec+tan), A320958 (arcsin), A320959 (arctanh).
Cf. A373428.

Programs

  • Maple
    ExpLim := proc(len, f) local kernel, sf, egf:
    sf := proc(n) option remember; `if`(n <= 1, 1 - n, (n-1)*(sf(n-1) + sf(n-2))) end:
    kernel := proc(n, k) option remember; binomial(n, k)*sf(k) end:
    egf := n -> add(kernel(n, k)*f(x*(n-k)), k=0..n):
    series(egf(len), x, len+2): seq(coeff(%, x, k)*k!/len!, k=0..len) end:
    ExpLim(19, sec + tan);
    # Alternative:
    explim := (len, f) -> seq(combinat:-bell(n)*((D@@n)(f))(0), n=0..len):
    explim(19, sec + tan);
    # Or:
    a := n -> A000110(n)*A000111(n): seq(a(n), n = 0..19);  # Peter Luschny, Jun 07 2024
  • Mathematica
    m = 20; CoefficientList[Sec[x] + Tan[x] + O[x]^m, x] * Range[0, m-1]! *
    BellB[Range[0, m-1]] (* Jean-François Alcover, Jun 19 2019 *)

Extensions

Name extended by Peter Luschny, Jun 07 2024

A320958 The exponential limit of arcsin (odd indices only).

Original entry on oeis.org

1, 5, 468, 197325, 233145675, 605979974250, 2987147975582925, 25254853526009732625, 340477692051264295027500, 6926101229658271208893970625, 203562520854789108487169894574375, 8346651541805126492397454664310896250, 463877742240727904202821053051014479795625
Offset: 0

Views

Author

Peter Luschny, Nov 08 2018

Keywords

Comments

See A320956 for definitions and comments.

Examples

			Illustration of the convergence in the sense of A320956:
   [0] 0, 0, 0, 0, 0,   0, 0,      0, 0,         0, ...
   [1] 0, 1, 0, 1, 0,   9, 0,    225, 0,     11025, ... A177145, A001818
   [2] 0, 1, 0, 4, 0, 144, 0,  14400, 0,   2822400, ... A122747
   [3] 0, 1, 0, 5, 0, 369, 0,  82125, 0,  36173025, ...
   [4] 0, 1, 0, 5, 0, 459, 0, 160875, 0, 121837275, ...
   [5] 0, 1, 0, 5, 0, 468, 0, 192375, 0, 198472050, ...
   [6] 0, 1, 0, 5, 0, 468, 0, 197100, 0, 227644200, ...
   [7] 0, 1, 0, 5, 0, 468, 0, 197325, 0, 232737750, ...
   [8] 0, 1, 0, 5, 0, 468, 0, 197325, 0, 233134650, ...
   [9] 0, 1, 0, 5, 0, 468, 0, 197325, 0, 233145675, ...
		

Crossrefs

Cf. A320955 (exp), A320962 (log(x+1)), A320956 (sec+tan), this sequence (arcsin),
A320959 (arctanh).

Programs

  • Maple
    # Function ExpLim defined in A320956.
    L := [ExpLim(28, arcsin)]: seq(L[2*n], n=1..13);
  • Mathematica
    m = 13; CoefficientList[ArcSin[x] + O[x]^(2 m + 1), x]*Range[0, 2 m - 1]!*BellB[Range[0, 2 m - 1]] // DeleteCases[#, 0]& (* Jean-François Alcover, Jul 23 2019 *)

A320959 The exponential limit of arctanh (odd indices only).

Original entry on oeis.org

1, 10, 1248, 631440, 852647040, 2462394816000, 13241729554099200, 120563962753538304000, 1733764260005567741952000, 37343395325946891151466496000, 1155311729350231354981936496640000, 49626886713956000390638096497377280000, 2878005957927359237424925417166882734080000
Offset: 0

Views

Author

Peter Luschny, Nov 08 2018

Keywords

Comments

See A320956 for definitions and comments.

Examples

			Illustration of the convergence in the sense of A320956:
   [0] 0, 0, 0,  0, 0,    0, 0,      0, 0,         0, ...
   [1] 0, 1, 0,  2, 0,   24, 0,    720, 0,     40320, ... A005359
   [2] 0, 1, 0,  8, 0,  384, 0,  46080, 0,  10321920, ... A067624
   [3] 0, 1, 0, 10, 0,  984, 0, 262800, 0, 132289920, ...
   [4] 0, 1, 0, 10, 0, 1224, 0, 514800, 0, 445576320, ...
   [5] 0, 1, 0, 10, 0, 1248, 0, 615600, 0, 725840640, ...
   [6] 0, 1, 0, 10, 0, 1248, 0, 630720, 0, 832527360, ...
   [7] 0, 1, 0, 10, 0, 1248, 0, 631440, 0, 851155200, ...
   [8] 0, 1, 0, 10, 0, 1248, 0, 631440, 0, 852606720, ...
   [9] 0, 1, 0, 10, 0, 1248, 0, 631440, 0, 852647040, ...
		

Crossrefs

Cf. A320955 (exp), A320962 (log(x+1)), A320956 (sec+tan), A320958 (arcsin), this sequence (arctanh).

Programs

  • Maple
    # The function ExpLim is defined in A320956.
    L := [ExpLim(28, arctanh)]: seq(L[2*n], n=1..13);
  • Mathematica
    m = 13; CoefficientList[ArcTanh[x] + O[x]^(2 m + 1), x]*Range[0, 2 m - 1]!*BellB[Range[0, 2 m - 1]] // DeleteCases[#, 0]& (* Jean-François Alcover, Jul 23 2019 *)

Formula

For n >= 3 and odd, -a(m)*Zeta(m) = g(n), where g denotes the exponential limit of log(Gamma(x + 1)) and m = (n-1)/2.

A320964 a(n) = Sum_{j=0..n} Sum_{k=0..j} Stirling2(j - k, k).

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 18, 40, 98, 262, 757, 2344, 7723, 26918, 98790, 380361, 1531699, 6434386, 28130891, 127729731, 601196429, 2928369918, 14738842362, 76547694742, 409718539682, 2257459567237, 12789959138944, 74439150889081, 444647798089246, 2723583835351856
Offset: 0

Views

Author

Peter Luschny, Nov 06 2018

Keywords

Comments

The row sums of A320955 seen as a triangle are the partial sums of the antidiagonal sums of the triangle of the Stirling set numbers.
Number of partitions of [n] into m blocks that are ordered with increasing least elements and where block m-j contains n-j (m in {0..n}, j in {0..m-1}). a(5) = 9: 12345, 1234|5, 123|4|5, 124|35, 12|3|4|5, 134|25, 13|24|5, 14|235, 1|2|3|4|5. - Alois P. Heinz, May 16 2023

Crossrefs

Row sums of A320955 seen as a triangle.

Programs

  • Maple
    ListTools:-PartialSums([seq(add(Stirling2(n-k, k), k=0..n), n=0..29)]);
    # second Maple program:
    b:= proc(n, m) option remember; `if`(n>m,
          b(n-1, m)*m+b(n-1, m+1), `if`(n=m, 1, 0))
        end:
    a:= proc(n) a(n):= `if`(n=0, 0, a(n-1))+b(n, 0) end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2023
  • Mathematica
    a[n_] := Sum[Sum[StirlingS2[j - k, k], {k, 0, j}], {j, 0, n}]; Array[a, 30, 0] (* Amiram Eldar, Nov 06 2018 *)
    Table[Sum[StirlingS2[j-k,k],{j,0,n},{k,0,j}],{n,0,30}] (* Harvey P. Dale, May 15 2019 *)
  • PARI
    a(n)={sum(j=0, n, sum(k=0, j, abs(stirling(j-k, k, 2))))} \\ Andrew Howroyd, Nov 06 2018

A321400 A family of sequences converging to the exponential limit of sec + tan (A320956). Square array A(n, k) for n >= 0 and k >= 0, read by descending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 5, 8, 2, 1, 1, 0, 16, 40, 10, 2, 1, 1, 0, 61, 256, 70, 10, 2, 1, 1, 0, 272, 1952, 656, 75, 10, 2, 1, 1, 0, 1385, 17408, 7442, 816, 75, 10, 2, 1, 1, 0, 7936, 177280, 99280, 11407, 832, 75, 10, 2, 1, 1
Offset: 0

Views

Author

Peter Luschny, Nov 08 2018

Keywords

Comments

See the comments and definitions in A320956. Note also the corresponding construction for the exp function in A320955.

Examples

			Array starts:
n\k   0  1  2   3   4    5      6       7        8  ...
-------------------------------------------------------
  [0] 1, 0, 0,  0,  0,   0,     0,      0,       0, ... A000007
  [1] 1, 1, 1,  2,  5,  16,    61,    272,    1385, ... A000111
  [2] 1, 1, 2,  8, 40, 256,  1952,  17408,  177280, ... A000828
  [3] 1, 1, 2, 10, 70, 656,  7442,  99280, 1515190, ... A320957
  [4] 1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, ... A321394
  [5] 1, 1, 2, 10, 75, 832, 12322, 232560, 5325325, ...
  [6] 1, 1, 2, 10, 75, 832, 12383, 238272, 5693735, ...
  [7] 1, 1, 2, 10, 75, 832, 12383, 238544, 5732515, ...
  [8] 1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, ...
-------------------------------------------------------
Seen as a triangle given by descending antidiagonals:
  [0] 1
  [1] 0,  1
  [2] 0,  1,   1
  [3] 0,  1,   1,  1
  [4] 0,  2,   2,  1,  1
  [5] 0,  5,   8,  2,  1, 1
  [6] 0, 16,  40, 10,  2, 1, 1
  [7] 0, 61, 256, 70, 10, 2, 1, 1
		

Crossrefs

Cf. A000111 (n=1), A000828 (n=2), A320957 (n=3), A321394 (n=4), A320956 (limit).
Antidiagonal sums (and row sums of the triangle): A321399.

Programs

  • Maple
    sf := proc(n) option remember; `if`(n <= 1, 1-n, (n-1)*(sf(n-1) + sf(n-2))) end:
    kernel := proc(n, k) option remember; binomial(n, k)*sf(k) end:
    egf := n -> add(kernel(n, k)*((tan + sec)(x*(n - k))), k=0..n):
    A321400Row := proc(n, len) series(egf(n), x, len + 2):
    seq(coeff(%, x, k)*k!/n!, k=0..len) end:
    seq(lprint(A321400Row(n, 9)), n=0..9);

A320961 The exponential limit of (-x)!, rounded to the nearest integer.

Original entry on oeis.org

1, 1, 4, 27, 353, 6128, 145159, 4402407, 166608593, 7666343436, 420646243820, 27079750092637, 2018074017351900, 172131994564410026, 16641769389384512884, 1808431867178308597550, 219272140061011055068448, 29473880023661693302772550, 4366902281695075479226089449
Offset: 0

Views

Author

Peter Luschny, Nov 07 2018

Keywords

Comments

The exponential limit of a function is defined in A320956. Applied to (-x)! Maple returns a sequence of sums of Zeta values, powers of Pi, powers of Euler's gamma, etc.. The sequence starts: 1, gamma, (1/3)*Pi^2 + 2* gamma^2, 10*Zeta(3) + (5/2)*Pi^2*gamma + 5*gamma^3, ... These sums, rounded to the nearest integer, give the sequence.

Crossrefs

The exponential limit of other functions: A320955 (exp), A320962 (log(x+1)), A320958 (arcsin), A320959 (arctanh).

Programs

  • Maple
    explim := (len, f) -> seq(combinat:-bell(n)*((D@@n)(f))(0), n=0..len):
    explim(18, x -> (-x)!): map(round, [evalf(%, 46)]);
  • Mathematica
    m = 19; CoefficientList[(-x)!+O[x]^m, x]*Range[0, m-1]!*BellB[Range[0, m-1]] // Round (* Jean-François Alcover, Jul 21 2019 *)
Showing 1-7 of 7 results.