A321400 A family of sequences converging to the exponential limit of sec + tan (A320956). Square array A(n, k) for n >= 0 and k >= 0, read by descending antidiagonals.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 5, 8, 2, 1, 1, 0, 16, 40, 10, 2, 1, 1, 0, 61, 256, 70, 10, 2, 1, 1, 0, 272, 1952, 656, 75, 10, 2, 1, 1, 0, 1385, 17408, 7442, 816, 75, 10, 2, 1, 1, 0, 7936, 177280, 99280, 11407, 832, 75, 10, 2, 1, 1
Offset: 0
Examples
Array starts: n\k 0 1 2 3 4 5 6 7 8 ... ------------------------------------------------------- [0] 1, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007 [1] 1, 1, 1, 2, 5, 16, 61, 272, 1385, ... A000111 [2] 1, 1, 2, 8, 40, 256, 1952, 17408, 177280, ... A000828 [3] 1, 1, 2, 10, 70, 656, 7442, 99280, 1515190, ... A320957 [4] 1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, ... A321394 [5] 1, 1, 2, 10, 75, 832, 12322, 232560, 5325325, ... [6] 1, 1, 2, 10, 75, 832, 12383, 238272, 5693735, ... [7] 1, 1, 2, 10, 75, 832, 12383, 238544, 5732515, ... [8] 1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, ... ------------------------------------------------------- Seen as a triangle given by descending antidiagonals: [0] 1 [1] 0, 1 [2] 0, 1, 1 [3] 0, 1, 1, 1 [4] 0, 2, 2, 1, 1 [5] 0, 5, 8, 2, 1, 1 [6] 0, 16, 40, 10, 2, 1, 1 [7] 0, 61, 256, 70, 10, 2, 1, 1
Crossrefs
Programs
-
Maple
sf := proc(n) option remember; `if`(n <= 1, 1-n, (n-1)*(sf(n-1) + sf(n-2))) end: kernel := proc(n, k) option remember; binomial(n, k)*sf(k) end: egf := n -> add(kernel(n, k)*((tan + sec)(x*(n - k))), k=0..n): A321400Row := proc(n, len) series(egf(n), x, len + 2): seq(coeff(%, x, k)*k!/n!, k=0..len) end: seq(lprint(A321400Row(n, 9)), n=0..9);
Comments