cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A320956 a(n) = A000110(n) * A000111(n). The exponential limit of sec + tan. Row sums of A373428.

Original entry on oeis.org

1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, 167822592, 5859172975, 240072637440, 11388362495705, 618357843791872, 38057876106154882, 2632817442236631040, 203225803724876875315, 17390464322078045896704, 1640312648221489789841119, 169667967895669459925991424
Offset: 0

Views

Author

Peter Luschny, Nov 07 2018

Keywords

Comments

We say that the sequence S is the exponential limit of the function f relative to the kernel K if and only if the exponential generating functions
egf(n) = Sum_{k=0..n} K(n, k)*f(x*(n-k)) generate a family of sequences
T(n) = k -> (k!/n!)*[x^k] egf(n) which converge to S. Convergence here means that for every fixed k the terms T(n)(k) differ from S(k) only for finitely many indices.
The paradigmatic example is to set f(x) = exp(x), K(n, k) = !k*binomial(n, k) (!n is the subfactorial of n) and obtain for S the Bell numbers. This example is set forth in A320955.
Let D(f)(x) represent the derivative of f(x) with respect to x and (D^(n))(f) the n-th derivative of f. Then the exponential limit of f is B(n)*((D^(n))(f))(0) where B(n) is the n-th Bell number: ExpLim(f) = f(0), (D(f))(0), 2*((D^(2))(f))(0), 5*((D^(3))(f))(0), 15*((D^(4))(f))(0), 52*((D^(5))(f))(0), ... Since exp is a fixed point of D and exp(0) = 1 we have the identity ExpLim(exp)[n] = B(n). Similarly ExpLim(sin)[n] = B(n)*mod(n,2)*(-1)^binomial(n,2).
If we set f = sec + tan and K(n, k) = !k*binomial(n, k) the exponential limit is this sequence, a(n).

Examples

			Illustration of the convergence:
  [0] 1, 0, 0,  0,  0,   0,     0,      0,       0, ... A000007
  [1] 1, 1, 1,  2,  5,  16,    61,    272,    1385, ... A000111
  [2] 1, 1, 2,  8, 40, 256,  1952,  17408,  177280, ... A000828
  [3] 1, 1, 2, 10, 70, 656,  7442,  99280, 1515190, ... A320957
  [4] 1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, ... A321394
  [5] 1, 1, 2, 10, 75, 832, 12322, 232560, 5325325, ...
  [6] 1, 1, 2, 10, 75, 832, 12383, 238272, 5693735, ...
  [7] 1, 1, 2, 10, 75, 832, 12383, 238544, 5732515, ...
  [8] 1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, ...
		

Crossrefs

Cf. A000111 (n=1), A000828 (n=2), A320957 (n=3), A321394 (n=4).
Cf. A320955 (exp), A320962 (log(x+1)), this sequence (sec+tan), A320958 (arcsin), A320959 (arctanh).
Cf. A373428.

Programs

  • Maple
    ExpLim := proc(len, f) local kernel, sf, egf:
    sf := proc(n) option remember; `if`(n <= 1, 1 - n, (n-1)*(sf(n-1) + sf(n-2))) end:
    kernel := proc(n, k) option remember; binomial(n, k)*sf(k) end:
    egf := n -> add(kernel(n, k)*f(x*(n-k)), k=0..n):
    series(egf(len), x, len+2): seq(coeff(%, x, k)*k!/len!, k=0..len) end:
    ExpLim(19, sec + tan);
    # Alternative:
    explim := (len, f) -> seq(combinat:-bell(n)*((D@@n)(f))(0), n=0..len):
    explim(19, sec + tan);
    # Or:
    a := n -> A000110(n)*A000111(n): seq(a(n), n = 0..19);  # Peter Luschny, Jun 07 2024
  • Mathematica
    m = 20; CoefficientList[Sec[x] + Tan[x] + O[x]^m, x] * Range[0, m-1]! *
    BellB[Range[0, m-1]] (* Jean-François Alcover, Jun 19 2019 *)

Extensions

Name extended by Peter Luschny, Jun 07 2024

A321394 a(n) = (1/24)*n!*[x^n] (9 + sectan(4*x) + 6*sectan(2*x) + 8*sectan(x)) where sectan(x) = sec(x) + tan(x).

Original entry on oeis.org

1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, 87700736, 2220246387, 62010892800, 1892138207375, 62591994720256, 2230631475837767, 85188256574494720, 3470563987113896475, 150234341045137637376, 6886077311552162511547, 333165973379285030666240, 16967906593223743786978375
Offset: 0

Views

Author

Peter Luschny, Nov 08 2018

Keywords

Comments

See A320956 for motivation and definitions.

Crossrefs

Cf. A000111 (n=1), A000828 (n=2), A320957 (n=3), this sequence (n=4), A320956.

Programs

  • Maple
    sectan := x -> sec(x) + tan(x): # sin(Pi/4 + x/2)*csc(Pi/4 - x/2)
    egf := 9 + sectan(4*x) + 6*sectan(2*x) + 8*sectan(x):
    ser := series(egf, x, 22): seq((1/24)*n!*coeff(ser, x, n), n=0..20);
  • Mathematica
    m = 20;
    sectan[x_] := Sec[x] + Tan[x];
    egf = 9 + sectan[4x] + 6 sectan[2x] + 8 sectan[x];
    (1/24) CoefficientList[egf + O[x]^(m+1), x] Range[0, m]! (* Jean-François Alcover, Aug 19 2021 *)
  • PARI
    sectan(x) = 1/cos(x) + tan(x);
    my(x='x+O('x^25)); Vec(serlaplace(9 + sectan(4*x) + 6*sectan(2*x) + 8*sectan(x)))/24 \\ Michel Marcus, Aug 19 2021

A321400 A family of sequences converging to the exponential limit of sec + tan (A320956). Square array A(n, k) for n >= 0 and k >= 0, read by descending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 5, 8, 2, 1, 1, 0, 16, 40, 10, 2, 1, 1, 0, 61, 256, 70, 10, 2, 1, 1, 0, 272, 1952, 656, 75, 10, 2, 1, 1, 0, 1385, 17408, 7442, 816, 75, 10, 2, 1, 1, 0, 7936, 177280, 99280, 11407, 832, 75, 10, 2, 1, 1
Offset: 0

Views

Author

Peter Luschny, Nov 08 2018

Keywords

Comments

See the comments and definitions in A320956. Note also the corresponding construction for the exp function in A320955.

Examples

			Array starts:
n\k   0  1  2   3   4    5      6       7        8  ...
-------------------------------------------------------
  [0] 1, 0, 0,  0,  0,   0,     0,      0,       0, ... A000007
  [1] 1, 1, 1,  2,  5,  16,    61,    272,    1385, ... A000111
  [2] 1, 1, 2,  8, 40, 256,  1952,  17408,  177280, ... A000828
  [3] 1, 1, 2, 10, 70, 656,  7442,  99280, 1515190, ... A320957
  [4] 1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, ... A321394
  [5] 1, 1, 2, 10, 75, 832, 12322, 232560, 5325325, ...
  [6] 1, 1, 2, 10, 75, 832, 12383, 238272, 5693735, ...
  [7] 1, 1, 2, 10, 75, 832, 12383, 238544, 5732515, ...
  [8] 1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, ...
-------------------------------------------------------
Seen as a triangle given by descending antidiagonals:
  [0] 1
  [1] 0,  1
  [2] 0,  1,   1
  [3] 0,  1,   1,  1
  [4] 0,  2,   2,  1,  1
  [5] 0,  5,   8,  2,  1, 1
  [6] 0, 16,  40, 10,  2, 1, 1
  [7] 0, 61, 256, 70, 10, 2, 1, 1
		

Crossrefs

Cf. A000111 (n=1), A000828 (n=2), A320957 (n=3), A321394 (n=4), A320956 (limit).
Antidiagonal sums (and row sums of the triangle): A321399.

Programs

  • Maple
    sf := proc(n) option remember; `if`(n <= 1, 1-n, (n-1)*(sf(n-1) + sf(n-2))) end:
    kernel := proc(n, k) option remember; binomial(n, k)*sf(k) end:
    egf := n -> add(kernel(n, k)*((tan + sec)(x*(n - k))), k=0..n):
    A321400Row := proc(n, len) series(egf(n), x, len + 2):
    seq(coeff(%, x, k)*k!/n!, k=0..len) end:
    seq(lprint(A321400Row(n, 9)), n=0..9);
Showing 1-3 of 3 results.