A099266 Partial sums of A056273.
1, 3, 8, 23, 75, 278, 1154, 5265, 25913, 135212, 736704, 4139831, 23767895, 138468210, 814675838, 4824766301, 28699128501, 171207852152, 1023332115836, 6124430348355, 36684624841811, 219860794899518, 1318179574171578
Offset: 1
Links
- Nelma Moreira and Rogerio Reis, On the density of languages representing finite set partitions, Technical Report DCC-2004-07, August 2004, DCC-FC & LIACC, Universidade do Porto.
- Nelma Moreira and Rogerio Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
- Index entries for linear recurrences with constant coefficients, signature (17,-111,355,-584,468,-144).
Programs
-
Maple
with (combinat):seq(sum(sum(stirling2(k, j),j=1..6), k=1..n), n=1..23); # Zerinvary Lajos, Dec 04 2007
-
PARI
Vec(x*(91*x^4-135*x^3+68*x^2-14*x+1)/((x-1)^2*(2*x-1)*(3*x-1)*(4*x-1)*(6*x-1)) + O(x^100)) \\ Colin Barker, Oct 28 2014
-
PARI
a(n) = sum(m=1, n, sum(i=1, 6, stirling(m, i, 2))) \\ Petros Hadjicostas, Mar 09 2021
Formula
For c = 6, a(c, n) = g(1, c)*n + Sum_{k=2..c} g(k, c)*k*(k^n - 1)/(k - 1), where g(1, 1) = 1, g(1, c) = g(1, c-1) + (-1)^(c-1)/(c-1)! for c > 1, and g(k, c) = g(k-1, c-1)/k for c > 1 and 2 <= k <= c.
G.f.: x*(91*x^4 - 135*x^3 + 68*x^2 - 14*x + 1) / ((x - 1)^2*(2*x - 1)*(3*x - 1)*(4*x - 1)*(6*x - 1)). - Colin Barker, Oct 28 2014
Extensions
Shorter name by Joerg Arndt, Oct 28 2014
Comments edited by Petros Hadjicostas, Mar 09 2021
Comments