cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A099265 Partial sums of A056272.

Original entry on oeis.org

1, 3, 8, 23, 75, 277, 1132, 4977, 22979, 109451, 531456, 2610931, 12917683, 64181625, 319695980, 1594859885, 7963472187, 39784944799, 198827606704, 993846943839, 4968361974491, 24839192686973, 124188113975628, 620917025694793, 3104514504312595, 15522360665856147, 77611167795714752
Offset: 1

Views

Author

Nelma Moreira, Oct 10 2004

Keywords

Comments

Density of regular language L{0}* over {0, 1, 2, 3, 4, 5} (i.e., the number of strings of length n), where L is described by regular expression with c = 5: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*), where "Sum" stands for union and "Product" for concatenation. I.e., L = L((11* + 11*2(1 + 2)* + ... + 11*2(1 + 2)*3(1 + 2 + 3)*4(1 + 2 + 3 + 4)*5(1 + 2 + 3 + 4 + 5)*)0*).

Crossrefs

Programs

  • Maple
    with (combinat):seq(sum(sum(stirling2(k, j),j=1..5), k=1..n), n=1..23); # Zerinvary Lajos, Dec 04 2007
  • PARI
    a(n) = sum(m=1, n, sum(i=1, 5, stirling(m, i, 2))) \\ Petros Hadjicostas, Mar 10 2021

Formula

a(5,n) = (1/96)*5^n + (1/8)*3^n + (1/3)*2^n + (3/8)*n - 15/32.
a(n) = Sum_{m=1..n} Sum_{i=1..5} S(m,i), where S(m,i) = A008277(m,i) (i.e., partial sum of the sum of Stirling numbers of second kind S(n,i) for i = 1..5).
For c = 5, a(c,n) = g(1,c)*n + Sum_{k=2..c} g(k,c)*k*(k^n - 1)/(k - 1), where g(1,1) = 1, g(1,c) = g(1,c-1) + (-1)^(c-1)/(c-1)! for c > 1, and g(k,c) = g(k-1, c-1)/k for c > 1 and 2 <= k <= c.
G.f.: x*(-1 + 19*x^3 - 24*x^2 + 9*x)/((3*x-1)*(2*x-1)*(5*x-1)*(x-1)^2). [Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009]

Extensions

Name and Formula section edited by Petros Hadjicostas, Mar 10 2021
More terms from Michel Marcus, Jan 05 2025
Showing 1-1 of 1 results.