cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A278984 Array read by antidiagonals downwards: T(b,n) = number of words of length n over an alphabet of size b that are in standard order.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 5, 2, 1, 1, 16, 14, 5, 2, 1, 1, 32, 41, 15, 5, 2, 1, 1, 64, 122, 51, 15, 5, 2, 1, 1, 128, 365, 187, 52, 15, 5, 2, 1, 1, 256, 1094, 715, 202, 52, 15, 5, 2, 1, 1, 512, 3281, 2795, 855, 203, 52, 15, 5, 2, 1, 1, 1024, 9842, 11051, 3845, 876, 203, 52, 15, 5, 2, 1
Offset: 1

Views

Author

Joerg Arndt and N. J. A. Sloane, Dec 05 2016

Keywords

Comments

We study words made of letters from an alphabet of size b, where b >= 1. We assume the letters are labeled {1,2,3,...,b}. There are b^n possible words of length n.
We say that a word is in "standard order" if it has the property that whenever a letter i appears, the letter i-1 has already appeared in the word. This implies that all words begin with the letter 1.
Let X be the random variable that assigns to each permutation of {1,2,...,b} (with uniform distribution) its number of fixed points (as in A008290). Then T(b,n) is the n-th moment about 0 of X, i.e., the expected value of X^n. - Geoffrey Critzer, Jun 23 2020

Examples

			The array begins:
1,.1,..1,...1,...1,...1,...1,....1..; b=1, A000012
1,.2,..4,...8,..16,..32,..64,..128..; b=2, A000079
1,.2,..5,..14,..41,.122,.365,.1094..; b=3, A007051 (A278985)
1,.2,..5,..15,..51,.187,.715,.2795..; b=4, A007581
1,.2,..5,..15,..52,.202,.855,.3845..; b=5, A056272
1,.2,..5,..15,..52,.203,.876,.4111..; b=6, A056273
...
The rows tend to A000110.
		

Crossrefs

Rows 1 through 16 of the array are: A000012, A000079, A007051 (or A124302), A007581 (or A124303), A056272, A056273, A099262, A099263, A164863, A164864, A203641-A203646.
The limit of the rows is A000110, the Bell numbers.
See A278985 for the words arising in row b=3.
Cf. A203647, A137855 (essentially same table).

Programs

  • Maple
    with(combinat);
    f1:=proc(L,b) local t1;i;
    t1:=add(stirling2(L,i),i=1..b);
    end:
    Q1:=b->[seq(f1(L,b), L=1..20)]; # the rows of the array are Q1(1), Q1(2), Q1(3), ...
  • Mathematica
    T[b_, n_] := Sum[StirlingS2[n, j], {j, 1, b}]; Table[T[b-n+1, n], {b, 1, 12}, {n, b, 1, -1}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)

Formula

The number of words of length n over an alphabet of size b that are in standard order is Sum_{j = 1..b} Stirling2(n,j).

A203641 Number of arrays of n 0..10 integers with new values introduced in order 0..10 but otherwise unconstrained.

Original entry on oeis.org

1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213596, 27644358, 190895863, 1382847419, 10477213268, 82797679445, 680685836527, 5806124780384, 51245294979716, 466668627500968, 4371727233798927, 42000637216351225
Offset: 1

Views

Author

R. H. Hardin, Jan 04 2012

Keywords

Comments

From Danny Rorabaugh, Mar 03 2015: (Start)
a(n) is also the number of ways of placing n labeled balls into 11 indistinguishable boxes.
a(n) is also the number of word structures of length n using an 11-ary alphabet.
(End)

Crossrefs

Column k=10 of A203647.

Programs

  • Maple
    f:= n -> add(Stirling2(n,k),k=1..11):
    map(f, [$1..100]); # Robert Israel, Aug 08 2016
  • PARI
    a(n) = sum(k=1,11,stirling(n,k, 2)); \\ Michel Marcus, Mar 03 2015

Formula

Empirical: a(n) = 56*a(n-1) -1365*a(n-2) +19020*a(n-3) -167223*a(n-4) +965328*a(n-5) -3686255*a(n-6) +9133180*a(n-7) -13926276*a(n-8) +11655216*a(n-9) -3991680*a(n-10).
a(n) = Sum_{k=1..11} stirling2(n,k). - Danny Rorabaugh, Mar 03 2015
G.f.: Sum_{k=1..11} Product_{j=1..k} x/(1-j*x). This confirms the empirical recurrence. - Robert Israel, Aug 08 2016

A137855 Triangle read by rows: T(n,k) = Sum_{j=1..n-k+1} Stirling2(k, j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 8, 1, 1, 2, 5, 14, 16, 1, 1, 2, 5, 15, 41, 32, 1, 1, 2, 5, 15, 51, 122, 64, 1, 1, 2, 5, 15, 52, 187, 365, 128, 1, 1, 2, 5, 15, 52, 202, 715, 1094, 256, 1, 1, 2, 5, 15, 52, 203, 855, 2795, 3281, 512, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 16 2008

Keywords

Comments

Rows of the array tend to A000110 starting (1, 2, 5, 15, 52, ...).

Examples

			First few rows of the array:
  1, 1, 1,  1,  1, ...
  1, 2, 4,  8, 16, ...
  1, 2, 5, 14, 41, ...
  1, 2, 5, 14, 51, ...
  1, 2, 5, 14, 52, ...
  ...
First few rows of the triangle:
  1;
  1, 1;
  1, 2, 1;
  1, 2, 4,  1;
  1, 2, 5,  8,  1;
  1, 2, 5, 14, 16,   1;
  1, 2, 5, 15, 41,  32,   1;
  1, 2, 5, 15, 51, 122,  64,    1;
  1, 2, 5, 15, 52, 187, 365,  128,   1;
  1, 2, 5, 15, 52, 202, 715, 1094, 256, 1;
  ...
		

Crossrefs

Row sums are A137856.

Programs

  • PARI
    T(n,k)={sum(j=1, n-k+1, stirling(k,j,2))} \\ Andrew Howroyd, Aug 09 2018

Formula

Take antidiagonals of an array formed by A000012 * A008277(transform), where A000012 = (1; 1,1; 1,1,1; ...) and A008277 = the Stirling2 triangle.

Extensions

Name changed by Andrew Howroyd, Aug 09 2018

A203646 Number of arrays of n 0..15 integers with new values introduced in order 0..15 but otherwise unconstrained.

Original entry on oeis.org

1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, 1382958545, 10480142147, 82864869803, 682076806005, 5832742192288, 51724157478221, 474869780161021, 4506714279517080, 44151953491540255
Offset: 1

Views

Author

R. H. Hardin, Jan 04 2012

Keywords

Comments

Column 15 of A203647.

Crossrefs

Cf. A203641.

Formula

Empirical: a(n) = 121*a(n-1) -6685*a(n-2) +223405*a(n-3) -5042947*a(n-4) +81308227*a(n-5) -965408015*a(n-6) +8576039615*a(n-7) -57312583328*a(n-8) +287212533608*a(n-9) -1066335473840*a(n-10) +2866534951280*a(n-11) -5367984964224*a(n-12) +6557974412544*a(n-13) -4622628648960*a(n-14) +1394852659200*a(n-15).
Empirical formula confirmed by extension of first ten columns, see A203641. - Ray Chandler, Jul 06 2024

A203642 Number of arrays of n 0..11 integers with new values introduced in order 0..11 but otherwise unconstrained.

Original entry on oeis.org

1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644436, 190899230, 1382953889, 10479970386, 82859701769, 681942165393, 5829591731684, 51656311613107, 473501669531146, 4480550589850064, 43672799989835155
Offset: 1

Views

Author

R. H. Hardin Jan 04 2012

Keywords

Comments

Column 11 of A203647

Crossrefs

Cf. A203641.

Formula

Empirical: a(n) = 67*a(n-1) -1980*a(n-2) +33990*a(n-3) -375573*a(n-4) +2795331*a(n-5) -14241590*a(n-6) +49412660*a(n-7) -113667576*a(n-8) +163671552*a(n-9) -131172480*a(n-10) +43545600*a(n-11)
Empirical formula confirmed by extension of first ten columns, see A203641. - Ray Chandler, Jul 06 2024

A203643 Number of arrays of n 0..12 integers with new values introduced in order 0..12 but otherwise unconstrained.

Original entry on oeis.org

1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899321, 1382958439, 10480136006, 82864611947, 682068020031, 5832484170844, 51717380273487, 474706578749477, 4503047451718545, 44074082550176545
Offset: 1

Views

Author

R. H. Hardin Jan 04 2012

Keywords

Comments

Column 12 of A203647

Crossrefs

Cf. A203641.

Formula

Empirical: a(n) = 79*a(n-1) -2783*a(n-2) +57695*a(n-3) -782133*a(n-4) +7284057*a(n-5) -47627789*a(n-6) +219409685*a(n-7) -703202566*a(n-8) +1519272964*a(n-9) -2082477528*a(n-10) +1606986720*a(n-11) -518918400*a(n-12)
Empirical formula confirmed by extension of first ten columns, see A203641. - Ray Chandler, Jul 06 2024

A203644 Number of arrays of n 0..13 integers with new values introduced in order 0..13 but otherwise unconstrained.

Original entry on oeis.org

1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, 1382958544, 10480142026, 82864861847, 682076428809, 5832727748374, 51723682798067, 474855882753977, 4506342616999876, 44142711725983660
Offset: 1

Views

Author

R. H. Hardin, Jan 04 2012

Keywords

Crossrefs

Column 13 of A203647.
Cf. A203641.

Formula

Empirical: a(n) = 92*a(n-1) -3809*a(n-2) +93808*a(n-3) -1530243*a(n-4) +17419116*a(n-5) -141963107*a(n-6) +835933384*a(n-7) -3542188936*a(n-8) +10614910592*a(n-9) -21727767984*a(n-10) +28528276608*a(n-11) -21289201920*a(n-12) +6706022400*a(n-13).
Empirical formula confirmed by extension of first ten columns, see A203641. - Ray Chandler, Jul 06 2024

A203645 Number of arrays of n 0..14 integers with new values introduced in order 0..14 but otherwise unconstrained.

Original entry on oeis.org

1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, 1382958545, 10480142146, 82864869667, 682076796009, 5832741665152, 51724135127267, 474868970216557, 4506688232943076, 44151191130412991
Offset: 1

Views

Author

R. H. Hardin, Jan 04 2012

Keywords

Comments

Column 14 of A203647.

Crossrefs

Cf. A203641.

Formula

Empirical: a(n) = 106*a(n-1) -5096*a(n-2) +147056*a(n-3) -2840838*a(n-4) +38786748*a(n-5) -385081268*a(n-6) +2816490248*a(n-7) -15200266081*a(n-8) +59999485546*a(n-9) -169679309436*a(n-10) +331303013496*a(n-11) -418753514880*a(n-12) +303268406400*a(n-13) -93405312000*a(n-14).
Empirical formula confirmed by extension of first ten columns, see A203641. - Ray Chandler, Jul 06 2024
Showing 1-8 of 8 results.