A276543
Triangle read by rows: T(n,k) = number of primitive (period n) n-bead bracelet structures using exactly k different colored beads.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 13, 11, 3, 1, 0, 8, 31, 33, 16, 3, 1, 0, 14, 80, 136, 85, 27, 4, 1, 0, 21, 201, 478, 434, 171, 37, 4, 1, 0, 39, 533, 1849, 2270, 1249, 338, 54, 5, 1, 0, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1
Offset: 1
Triangle starts:
1
0 1
0 1 1
0 2 2 1
0 3 5 2 1
0 5 13 11 3 1
0 8 31 33 16 3 1
0 14 80 136 85 27 4 1
0 21 201 478 434 171 37 4 1
0 39 533 1849 2270 1249 338 54 5 1
...
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
\\ Ach is A304972 and R is A152175 as square matrices.
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n)={my(M=(R(n)+Ach(n))/2); Mat(vectorv(n,n,sumdiv(n, d, moebius(d)*M[n/d,])))}
{ my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
A107424
Triangle read by rows: T(n, k) is the number of primitive (period n) n-bead necklace structures with k different colors. Only includes structures that contain all k colors.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 17, 13, 3, 1, 0, 9, 43, 50, 20, 3, 1, 0, 16, 124, 220, 136, 36, 4, 1, 0, 28, 338, 866, 773, 296, 52, 4, 1, 0, 51, 941, 3435, 4280, 2303, 596, 78, 5, 1, 0, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 0, 170, 7234, 51061
Offset: 1
T(6, 4) = 13: {aaabcd, aabacd, aabcad, abacad, aabbcd, aabcbd, aabcdb, aacbbd, aacbdb, ababcd, abacbd, acabdb, abcabd}.
From _Andrew Howroyd_, Apr 09 2017 (Start)
Triangle starts:
1
0 1
0 1 1
0 2 2 1
0 3 5 2 1
0 5 17 13 3 1
0 9 43 50 20 3 1
0 16 124 220 136 36 4 1
0 28 338 866 773 296 52 4 1
0 51 941 3435 4280 2303 596 78 5 1
(End)
-
A[d_, n_] := A[d, n] = Which[n == 0, 1, n == 1, DivisorSum[d, x^# &], d == 1, Sum[StirlingS2[n, k] x^k, {k, 0, n}], True, Expand[A[d, 1] A[d, n-1] + D[A[d, n-1], x] x]];
B[n_, k_] := Coefficient[DivisorSum[n, EulerPhi[#] A[#, n/#]&]/n/x, x, k];
T[n_, k_] := DivisorSum[n, MoebiusMu[n/#] B[#, k]&];
Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jun 06 2018, after Andrew Howroyd and Robert A. Russell *)
-
\\ here R(n) is A152175 as square matrix.
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n) = {my(M=R(n)); matrix(n, n, i, k, sumdiv(i, d, moebius(i/d)*M[d,k]))}
{ my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 09 2020
A309784
T(n,k) is the number of non-equivalent distinguishing coloring partitions of the cycle on n vertices with exactly k parts. Regular triangle read by rows, n >= 1, 1 <= k <= n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 4, 2, 1, 0, 1, 8, 10, 3, 1, 0, 1, 25, 32, 16, 3, 1, 0, 4, 62, 129, 84, 27, 4, 1, 0, 7, 176, 468, 433, 171, 37, 4, 1, 0, 18, 470, 1806, 2260, 1248, 338, 54, 5, 1, 0, 31, 1311, 6780, 11515, 8388, 3056, 590, 70, 5, 1, 0, 70, 3620, 25917, 58312, 56065, 26695, 6907, 1014, 96, 6, 1
Offset: 1
The triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 1, 1;
0, 0, 4, 2, 1;
0, 1, 8, 10, 3, 1;
0, 1, 25, 32, 16, 3, 1;
0, 4, 62, 129, 84, 27, 4, 1;
0, 7, 176, 468, 433, 171, 37, 4, 1;
0, 18, 470, 1806, 2260, 1248, 338, 54, 5, 1;
...
For n=6, we can partition the vertices of C_6 into exactly 3 parts in 8 ways such that all these partitions induce distinguishing colorings for C_6 and that all the 8 partitions are non-equivalent. The partitions are as follows:
{ { 1 }, { 2 }, { 3, 4, 5, 6 } }
{ { 1 }, { 2, 3 }, { 4, 5, 6 } }
{ { 1 }, { 2, 3, 4, 6 }, { 5 } }
{ { 1 }, { 2, 3, 5 }, { 4, 6 } }
{ { 1 }, { 2, 3, 6 }, { 4, 5 } }
{ { 1 }, { 2, 4, 5 }, { 3, 6 } }
{ { 1, 2 }, { 3, 4 }, { 5, 6 } }
{ { 1, 2 }, { 3, 5 }, { 4, 6 } }
For n=6, the above 8 partitions can be written as the following 3 colored bracelet structures: ABCCCC, ABBCCC, ABBBCB, ABBCBC, ABBCCB, ABCBBC, AABBCC, AABCBC. - _Andrew Howroyd_, Sep 22 2019
-
\\ Ach is A304972 and R is A152175 as square matrices.
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n)={my(A=Ach(n), M=R(n), S=matrix(n, n, n, k, stirling(n, k, 2))); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*(M[n/d,] + A[n/d,])/2 - moebius(d)*(S[(n/d+1)\2, ] + S[n/d\2+1, ] + if((n-d)%2, A[(n/d+1)\2, ] + A[n/d\2+1, ]))/if(d%2, 2, 1) )))}
{ my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Oct 02 2019
A276549
Number of primitive (aperiodic) reversible string structures with n beads using an infinite alphabet.
Original entry on oeis.org
1, 1, 3, 9, 31, 112, 467, 2141, 10739, 58454, 340389, 2110093, 13830234, 95475087, 691543059, 5240282987, 41432986587, 341040306207, 2916376237349, 25862097428262, 237434959190586, 2253358056942644, 22076003468637449, 222979436688500085, 2319295172178428701
Offset: 1
-
b[n_] := SeriesCoefficient[Exp[(Exp[2*x] - 3)/2 + Exp[x]], {x, 0, n}]*n!;
c[n_] := If[n == 0, 1, (BellB[n - 1] + If[Mod[n, 2] == 1, b[(n - 1)/2], Sum[Binomial[n/2 - 1, k]*b[k], {k, 0, n/2 - 1}]])/2];
a[n_] := DivisorSum[n, MoebiusMu[n/#] c[# + 1]&];
Array[a, 25] (* Jean-François Alcover, Jun 16 2017, using Alois P. Heinz's code for A103293 *)
A056336
Number of primitive (aperiodic) reversible string structures with n beads using exactly two different colors.
Original entry on oeis.org
0, 1, 2, 4, 9, 16, 35, 66, 133, 261, 527, 1032, 2079, 4123, 8244, 16440, 32895, 65639, 131327, 262380, 524762, 1049071, 2098175, 4195230, 8390646, 16779231, 33558392, 67112892, 134225919, 268443306
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
a[1] = 0;
a[n_] := DivisorSum[n, MoebiusMu[#] (2^(n/#-2) + 2^(Floor[n/#/2]-1))&];
Array[a, 30] (* Jean-François Alcover, Jun 29 2018 *)
A056337
Number of primitive (aperiodic) reversible string structures with n beads using exactly three different colors.
Original entry on oeis.org
0, 0, 1, 4, 15, 49, 160, 498, 1544, 4715, 14356, 43420, 131145, 394990, 1188564, 3572400, 10732065, 32224216, 96733636, 290317660, 871200664, 2614083394, 7843255300, 23531731530, 70599259170, 211805771345
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A056338
Number of primitive (aperiodic) reversible string structures with n beads using exactly four different colors.
Original entry on oeis.org
0, 0, 0, 1, 6, 37, 183, 876, 3930, 17179, 73095, 306323, 1267266, 5198374, 21182337, 85910040, 347187210, 1399447578, 5629911015, 22616239535, 90754854843, 363890053582, 1458172596903, 5840531328120, 23385650196084
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A056339
Number of primitive (aperiodic) reversible string structures with n beads using exactly five different colors.
Original entry on oeis.org
0, 0, 0, 0, 1, 9, 76, 542, 3523, 21392, 123680, 690541, 3756151, 20042513, 105394295, 548123440, 2826435403, 14479201301, 73794961960, 374603863517, 1895632969275, 9568915248589, 48208452866816
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A056340
Number of primitive (aperiodic) reversible string structures with n beads using exactly six different colors.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 12, 142, 1346, 11511, 89974, 662673, 4662574, 31724723, 210361046, 1367510184, 8752976610, 55343946628, 346541488998, 2153041576027, 13292844257186, 81652683460145, 499484958151630
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Showing 1-9 of 9 results.
Comments