A107424
Triangle read by rows: T(n, k) is the number of primitive (period n) n-bead necklace structures with k different colors. Only includes structures that contain all k colors.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 17, 13, 3, 1, 0, 9, 43, 50, 20, 3, 1, 0, 16, 124, 220, 136, 36, 4, 1, 0, 28, 338, 866, 773, 296, 52, 4, 1, 0, 51, 941, 3435, 4280, 2303, 596, 78, 5, 1, 0, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 0, 170, 7234, 51061
Offset: 1
T(6, 4) = 13: {aaabcd, aabacd, aabcad, abacad, aabbcd, aabcbd, aabcdb, aacbbd, aacbdb, ababcd, abacbd, acabdb, abcabd}.
From _Andrew Howroyd_, Apr 09 2017 (Start)
Triangle starts:
1
0 1
0 1 1
0 2 2 1
0 3 5 2 1
0 5 17 13 3 1
0 9 43 50 20 3 1
0 16 124 220 136 36 4 1
0 28 338 866 773 296 52 4 1
0 51 941 3435 4280 2303 596 78 5 1
(End)
-
A[d_, n_] := A[d, n] = Which[n == 0, 1, n == 1, DivisorSum[d, x^# &], d == 1, Sum[StirlingS2[n, k] x^k, {k, 0, n}], True, Expand[A[d, 1] A[d, n-1] + D[A[d, n-1], x] x]];
B[n_, k_] := Coefficient[DivisorSum[n, EulerPhi[#] A[#, n/#]&]/n/x, x, k];
T[n_, k_] := DivisorSum[n, MoebiusMu[n/#] B[#, k]&];
Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jun 06 2018, after Andrew Howroyd and Robert A. Russell *)
-
\\ here R(n) is A152175 as square matrix.
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n) = {my(M=R(n)); matrix(n, n, i, k, sumdiv(i, d, moebius(i/d)*M[d,k]))}
{ my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 09 2020
A309784
T(n,k) is the number of non-equivalent distinguishing coloring partitions of the cycle on n vertices with exactly k parts. Regular triangle read by rows, n >= 1, 1 <= k <= n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 4, 2, 1, 0, 1, 8, 10, 3, 1, 0, 1, 25, 32, 16, 3, 1, 0, 4, 62, 129, 84, 27, 4, 1, 0, 7, 176, 468, 433, 171, 37, 4, 1, 0, 18, 470, 1806, 2260, 1248, 338, 54, 5, 1, 0, 31, 1311, 6780, 11515, 8388, 3056, 590, 70, 5, 1, 0, 70, 3620, 25917, 58312, 56065, 26695, 6907, 1014, 96, 6, 1
Offset: 1
The triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 1, 1;
0, 0, 4, 2, 1;
0, 1, 8, 10, 3, 1;
0, 1, 25, 32, 16, 3, 1;
0, 4, 62, 129, 84, 27, 4, 1;
0, 7, 176, 468, 433, 171, 37, 4, 1;
0, 18, 470, 1806, 2260, 1248, 338, 54, 5, 1;
...
For n=6, we can partition the vertices of C_6 into exactly 3 parts in 8 ways such that all these partitions induce distinguishing colorings for C_6 and that all the 8 partitions are non-equivalent. The partitions are as follows:
{ { 1 }, { 2 }, { 3, 4, 5, 6 } }
{ { 1 }, { 2, 3 }, { 4, 5, 6 } }
{ { 1 }, { 2, 3, 4, 6 }, { 5 } }
{ { 1 }, { 2, 3, 5 }, { 4, 6 } }
{ { 1 }, { 2, 3, 6 }, { 4, 5 } }
{ { 1 }, { 2, 4, 5 }, { 3, 6 } }
{ { 1, 2 }, { 3, 4 }, { 5, 6 } }
{ { 1, 2 }, { 3, 5 }, { 4, 6 } }
For n=6, the above 8 partitions can be written as the following 3 colored bracelet structures: ABCCCC, ABBCCC, ABBBCB, ABBCBC, ABBCCB, ABCBBC, AABBCC, AABCBC. - _Andrew Howroyd_, Sep 22 2019
-
\\ Ach is A304972 and R is A152175 as square matrices.
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n)={my(A=Ach(n), M=R(n), S=matrix(n, n, n, k, stirling(n, k, 2))); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*(M[n/d,] + A[n/d,])/2 - moebius(d)*(S[(n/d+1)\2, ] + S[n/d\2+1, ] + if((n-d)%2, A[(n/d+1)\2, ] + A[n/d\2+1, ]))/if(d%2, 2, 1) )))}
{ my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Oct 02 2019
A276544
Triangle read by rows: T(n,k) = number of primitive (aperiodic) reversible string structures with n beads using exactly k different colors.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 4, 4, 1, 0, 9, 15, 6, 1, 0, 16, 49, 37, 9, 1, 0, 35, 160, 183, 76, 12, 1, 0, 66, 498, 876, 542, 142, 16, 1, 0, 133, 1544, 3930, 3523, 1346, 242, 20, 1, 0, 261, 4715, 17179, 21392, 11511, 2980, 390, 25, 1
Offset: 1
Triangle starts
1
0 1
0 2 1
0 4 4 1
0 9 15 6 1
0 16 49 37 9 1
0 35 160 183 76 12 1
0 66 498 876 542 142 16 1
0 133 1544 3930 3523 1346 242 20 1
0 261 4715 17179 21392 11511 2980 390 25 1
...
Primitive reversible word structures are:
n=1: a => 1
n=2: ab => 1
n=3: aab, aba; abc => 2 + 1
n=4: aaab, aaba, aabb, abba => 4 (k=2)
aabc, abac, abbc, abca => 4 (k=3)
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[n == 0, 1, 0], 1, If[n > 0, 1, 0], _, If[OddQ[n], Sum[Binomial[(n - 1)/2, i] Ach[n - 1 - 2 i, k - 1], {i, 0, (n - 1)/2}], Sum[Binomial[n/2 - 1, i] (Ach[n - 2 - 2 i, k - 1] + 2^i Ach[n - 2 - 2 i, k - 2]), {i, 0, n/2 - 1}]]]
T[n_, k_] := DivisorSum[n, MoebiusMu[n/#] (StirlingS2[#, k] + Ach[#, k])/2& ];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 29 2018, after Robert A. Russell and Andrew Howroyd *)
-
\\ here Ach is A304972 as matrix.
Ach(n,m=n)={my(M=matrix(n, m, i, k, i>=k)); for(i=3, n, for(k=2, m, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
T(n,m=n)={my(M=matrix(n, m, i, k, stirling(i, k, 2)) + Ach(n,m)); matrix(n, m, i, k, sumdiv(i, d, moebius(i/d)*M[d,k]))/2}
{ my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 09 2020
A276550
Array read by antidiagonals: T(n,k) = number of primitive (period n) bracelets using a maximum of k different colored beads.
Original entry on oeis.org
1, 2, 0, 3, 1, 0, 4, 3, 2, 0, 5, 6, 7, 3, 0, 6, 10, 16, 15, 6, 0, 7, 15, 30, 45, 36, 8, 0, 8, 21, 50, 105, 132, 79, 16, 0, 9, 28, 77, 210, 372, 404, 195, 24, 0, 10, 36, 112, 378, 882, 1460, 1296, 477, 42, 0, 11, 45, 156, 630, 1848, 4220, 5890, 4380, 1209, 69, 0
Offset: 1
Table starts:
1 2 3 4 5 6 7 8 ...
0 1 3 6 10 15 21 28 ...
0 2 7 16 30 50 77 112 ...
0 3 15 45 105 210 378 630 ...
0 6 36 132 372 882 1848 3528 ...
0 8 79 404 1460 4220 10423 22904 ...
0 16 195 1296 5890 20640 60021 151840 ...
0 24 477 4380 25275 107100 364854 1057392 ...
...
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- G. Melançon, C. Reutenauer, On a Class of Lyndon Words Extending Christoffel Words and Related to a Multidimensional Continued Fraction Algorithm, J. Int. Seq. 16 (2013) #13.9.7, Corollary 6.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
-
A276550 := proc(n,k)
local d ;
add( numtheory[mobius](n/d)*A081720(d,k),d=numtheory[divisors](n)) ;
end proc:
seq(seq(A276550(n,d-n),n=1..d-1),d=2..10) ; # R. J. Mathar, Jan 22 2022
-
t[n_, k_] := Sum[EulerPhi[d] k^(n/d), {d, Divisors[n]}]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4;
T[n_, k_] := Sum[MoebiusMu[d] t[n/d, k], {d, Divisors[n]}];
Table[T[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 26 2020 *)
A056362
Number of primitive (period n) bracelet structures using a maximum of three different colored beads.
Original entry on oeis.org
1, 1, 1, 2, 4, 8, 18, 39, 94, 222, 572, 1463, 3934, 10584, 29211, 80808, 226430, 636320, 1800318, 5107479, 14548360, 41538874, 118927919, 341187047, 980838750, 2824561080, 8147547156, 23536592010, 68087313892, 197216119544, 571924673368, 1660419530055, 4825587979390
Offset: 0
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
a(0)=1 prepended and terms a(28) and beyond from
Andrew Howroyd, Oct 26 2019
A056363
Number of primitive (period n) bracelet structures using a maximum of four different colored beads.
Original entry on oeis.org
1, 1, 1, 2, 5, 10, 29, 72, 230, 700, 2421, 8308, 30070, 108990, 403188, 1497057, 5607200, 21076570, 79595257, 301492044, 1145558141, 4363503609, 16660196142, 63741248200, 244339616370, 938255682540, 3608668279965, 13900021843855, 53614339995060, 207062143625710
Offset: 0
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
a(0)=1 prepended and terms a(26) and beyond from
Andrew Howroyd, Oct 26 2019
A056364
Number of primitive (period n) bracelet structures using a maximum of five different colored beads.
Original entry on oeis.org
1, 1, 1, 2, 5, 11, 32, 88, 315, 1134, 4691, 19838, 88467, 399679, 1839857, 8533474, 39893579, 187393549, 884152226, 4185740194, 19876589828, 94633345517, 451615299593, 2159769331316, 10348546459872, 49672000435712, 238804870806677, 1149792978953236, 5543621480301561
Offset: 0
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
a(0)=1 prepended and terms a(25) and beyond from
Andrew Howroyd, Oct 26 2019
A056365
Number of primitive (period n) bracelet structures using a maximum of six different colored beads.
Original entry on oeis.org
1, 1, 1, 2, 5, 11, 33, 91, 342, 1305, 5940, 28227, 144545, 760109, 4112455, 22571026, 125410006, 702370207, 3959138462, 22425417823, 127530807883, 727630240442, 4163114784625, 23876534534361, 137228556011456, 790200525479694, 4557943660168122, 26331300028827092
Offset: 0
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
a(0)=1 prepended and terms a(25) and beyond from
Andrew Howroyd, Oct 26 2019
A056367
Number of primitive (period n) bracelet structures using exactly three different colored beads.
Original entry on oeis.org
0, 0, 1, 2, 5, 13, 31, 80, 201, 533, 1401, 3822, 10395, 28859, 80201, 225286, 634265, 1796433, 5100325, 14534758, 41513402, 118879249, 341094843, 980661980, 2824223490, 8146897815, 23535345170
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A056368
Number of primitive (period n) bracelet structures using exactly four different colored beads.
Original entry on oeis.org
0, 0, 0, 1, 2, 11, 33, 136, 478, 1849, 6845, 26136, 98406, 373977, 1416249, 5380770, 20440250, 77794939, 296384565, 1131009781, 4321964735, 16541268223, 63400061153, 243358777620, 935431121460, 3600520732809
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Showing 1-10 of 14 results.
Comments