A276543
Triangle read by rows: T(n,k) = number of primitive (period n) n-bead bracelet structures using exactly k different colored beads.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 13, 11, 3, 1, 0, 8, 31, 33, 16, 3, 1, 0, 14, 80, 136, 85, 27, 4, 1, 0, 21, 201, 478, 434, 171, 37, 4, 1, 0, 39, 533, 1849, 2270, 1249, 338, 54, 5, 1, 0, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1
Offset: 1
Triangle starts:
1
0 1
0 1 1
0 2 2 1
0 3 5 2 1
0 5 13 11 3 1
0 8 31 33 16 3 1
0 14 80 136 85 27 4 1
0 21 201 478 434 171 37 4 1
0 39 533 1849 2270 1249 338 54 5 1
...
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
\\ Ach is A304972 and R is A152175 as square matrices.
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n)={my(M=(R(n)+Ach(n))/2); Mat(vectorv(n,n,sumdiv(n, d, moebius(d)*M[n/d,])))}
{ my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
A309784
T(n,k) is the number of non-equivalent distinguishing coloring partitions of the cycle on n vertices with exactly k parts. Regular triangle read by rows, n >= 1, 1 <= k <= n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 4, 2, 1, 0, 1, 8, 10, 3, 1, 0, 1, 25, 32, 16, 3, 1, 0, 4, 62, 129, 84, 27, 4, 1, 0, 7, 176, 468, 433, 171, 37, 4, 1, 0, 18, 470, 1806, 2260, 1248, 338, 54, 5, 1, 0, 31, 1311, 6780, 11515, 8388, 3056, 590, 70, 5, 1, 0, 70, 3620, 25917, 58312, 56065, 26695, 6907, 1014, 96, 6, 1
Offset: 1
The triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 1, 1;
0, 0, 4, 2, 1;
0, 1, 8, 10, 3, 1;
0, 1, 25, 32, 16, 3, 1;
0, 4, 62, 129, 84, 27, 4, 1;
0, 7, 176, 468, 433, 171, 37, 4, 1;
0, 18, 470, 1806, 2260, 1248, 338, 54, 5, 1;
...
For n=6, we can partition the vertices of C_6 into exactly 3 parts in 8 ways such that all these partitions induce distinguishing colorings for C_6 and that all the 8 partitions are non-equivalent. The partitions are as follows:
{ { 1 }, { 2 }, { 3, 4, 5, 6 } }
{ { 1 }, { 2, 3 }, { 4, 5, 6 } }
{ { 1 }, { 2, 3, 4, 6 }, { 5 } }
{ { 1 }, { 2, 3, 5 }, { 4, 6 } }
{ { 1 }, { 2, 3, 6 }, { 4, 5 } }
{ { 1 }, { 2, 4, 5 }, { 3, 6 } }
{ { 1, 2 }, { 3, 4 }, { 5, 6 } }
{ { 1, 2 }, { 3, 5 }, { 4, 6 } }
For n=6, the above 8 partitions can be written as the following 3 colored bracelet structures: ABCCCC, ABBCCC, ABBBCB, ABBCBC, ABBCCB, ABCBBC, AABBCC, AABCBC. - _Andrew Howroyd_, Sep 22 2019
-
\\ Ach is A304972 and R is A152175 as square matrices.
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n)={my(A=Ach(n), M=R(n), S=matrix(n, n, n, k, stirling(n, k, 2))); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*(M[n/d,] + A[n/d,])/2 - moebius(d)*(S[(n/d+1)\2, ] + S[n/d\2+1, ] + if((n-d)%2, A[(n/d+1)\2, ] + A[n/d\2+1, ]))/if(d%2, 2, 1) )))}
{ my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Oct 02 2019
A276544
Triangle read by rows: T(n,k) = number of primitive (aperiodic) reversible string structures with n beads using exactly k different colors.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 4, 4, 1, 0, 9, 15, 6, 1, 0, 16, 49, 37, 9, 1, 0, 35, 160, 183, 76, 12, 1, 0, 66, 498, 876, 542, 142, 16, 1, 0, 133, 1544, 3930, 3523, 1346, 242, 20, 1, 0, 261, 4715, 17179, 21392, 11511, 2980, 390, 25, 1
Offset: 1
Triangle starts
1
0 1
0 2 1
0 4 4 1
0 9 15 6 1
0 16 49 37 9 1
0 35 160 183 76 12 1
0 66 498 876 542 142 16 1
0 133 1544 3930 3523 1346 242 20 1
0 261 4715 17179 21392 11511 2980 390 25 1
...
Primitive reversible word structures are:
n=1: a => 1
n=2: ab => 1
n=3: aab, aba; abc => 2 + 1
n=4: aaab, aaba, aabb, abba => 4 (k=2)
aabc, abac, abbc, abca => 4 (k=3)
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[n == 0, 1, 0], 1, If[n > 0, 1, 0], _, If[OddQ[n], Sum[Binomial[(n - 1)/2, i] Ach[n - 1 - 2 i, k - 1], {i, 0, (n - 1)/2}], Sum[Binomial[n/2 - 1, i] (Ach[n - 2 - 2 i, k - 1] + 2^i Ach[n - 2 - 2 i, k - 2]), {i, 0, n/2 - 1}]]]
T[n_, k_] := DivisorSum[n, MoebiusMu[n/#] (StirlingS2[#, k] + Ach[#, k])/2& ];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 29 2018, after Robert A. Russell and Andrew Howroyd *)
-
\\ here Ach is A304972 as matrix.
Ach(n,m=n)={my(M=matrix(n, m, i, k, i>=k)); for(i=3, n, for(k=2, m, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
T(n,m=n)={my(M=matrix(n, m, i, k, stirling(i, k, 2)) + Ach(n,m)); matrix(n, m, i, k, sumdiv(i, d, moebius(i/d)*M[d,k]))/2}
{ my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 09 2020
A056303
Number of primitive (period n) n-bead necklace structures using exactly two different colored beads.
Original entry on oeis.org
0, 1, 1, 2, 3, 5, 9, 16, 28, 51, 93, 170, 315, 585, 1091, 2048, 3855, 7280, 13797, 26214, 49929, 95325, 182361, 349520, 671088, 1290555, 2485504, 4793490, 9256395, 17895679, 34636833, 67108864, 130150493, 252645135, 490853403, 954437120, 1857283155
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
vector(100, n, sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n)-!(n-1)) \\ Altug Alkan, Oct 26 2015
-
from sympy import divisors, mobius
def a000048(n): return 1 if n<1 else sum([mobius(d)*2**(n/d) for d in divisors(n) if d%2 == 1])/(2*n)
def a(n): return a000048(n) - 0**(n - 1) # Indranil Ghosh, Apr 28 2017
A327693
Triangle read by rows: T(n,k) is the number of n-bead necklace structures which are not self-equivalent under a nonzero rotation using exactly k different colored beads.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 3, 5, 2, 0, 0, 4, 13, 9, 2, 0, 0, 9, 43, 50, 20, 3, 0, 0, 14, 116, 206, 127, 31, 3, 0, 0, 28, 335, 862, 772, 293, 51, 4, 0, 0, 48, 920, 3384, 4226, 2263, 580, 72, 4, 0, 0, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 0
Offset: 1
Triangle begins:
1;
0, 0;
0, 1, 0;
0, 1, 1, 0;
0, 3, 5, 2, 0;
0, 4, 13, 9, 2, 0;
0, 9, 43, 50, 20, 3, 0;
0, 14, 116, 206, 127, 31, 3, 0;
0, 28, 335, 862, 772, 293, 51, 4, 0;
0, 48, 920, 3384, 4226, 2263, 580, 72, 4, 0;
...
T(6, 4) = 9: {aaabcd, aabacd, aabcad, aabbcd, aabcbd, aabcdb, aacbdb, ababcd, abacbd}. Compared with A107424 the patterns {abacad, aacbbd, abcabd, acabdb} are excluded.
Cf.
A324802 (not self-equivalent under reversal and rotations).
-
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, moebius(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
{ my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) }
A056304
Number of primitive (period n) n-bead necklace structures using exactly three different colored beads.
Original entry on oeis.org
0, 0, 1, 2, 5, 17, 43, 124, 338, 941, 2591, 7234, 20125, 56407, 158349, 446492, 1262225, 3580330, 10181479, 29031306, 82968799, 237642659, 682014587, 1960974220, 5647919640, 16292741605, 47069104274, 136166647110, 394418199725, 1143821887473, 3320790074371
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A056302
Number of primitive (period n) n-bead necklace structures using a maximum of six different colored beads.
Original entry on oeis.org
1, 1, 2, 5, 11, 39, 125, 532, 2301, 11010, 54681, 284023, 1509851, 8194902, 45080652, 250641356, 1404374247, 7917209005, 44848645457, 255055220735, 1455247360000, 8326191235902, 47752990403133
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A056305
Number of primitive (period n) n-bead necklace structures using exactly four different colored beads.
Original entry on oeis.org
0, 0, 0, 1, 2, 13, 50, 220, 866, 3435, 13250, 51061, 194810, 742601, 2823764, 10738660, 40843370, 155493872, 592614050, 2261622287, 8643289484, 33080907357, 126797503250, 486710920300, 1870851589552
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A276547
Number of primitive (period n) n-bead necklace structures using an infinite alphabet.
Original entry on oeis.org
1, 1, 2, 5, 11, 39, 126, 537, 2358, 11690, 61689, 351725, 2126496, 13639244, 92197509, 655035225, 4874404107, 37893368072, 306986431846, 2586209738004, 22612848403442, 204850732418594, 1919652428481929, 18581619724011091, 185543613289200937, 1908894098864372104
Offset: 1
-
u[0, ] = 1; u[k, j_] := u[k, j] = Sum[Binomial[k - 1, i - 1]*DivisorSum[j, u[k - i, j]*#^(i - 1)&], {i, 1, k}];
b[0] = 1; b[n_] := DivisorSum[n, EulerPhi[#]*u[n/#, #]&]/n;
a[1] = 1; a[n_] := DivisorSum[n, MoebiusMu[n/#]*b[#]&];
Array[a, 26] (* Jean-François Alcover, Jun 16 2017, using Franklin T. Adams-Watters' code for A084423 *)
A056306
Number of primitive (period n) n-bead necklace structures using exactly five different colored beads.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 20, 136, 773, 4280, 22430, 115097, 577577, 2863207, 14051163, 68515378, 332514803, 1608799915, 7767857090, 37460384315, 180536313527, 869901375049, 4192038616700, 20208367780744
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Showing 1-10 of 11 results.
Comments