cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A107424 Triangle read by rows: T(n, k) is the number of primitive (period n) n-bead necklace structures with k different colors. Only includes structures that contain all k colors.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 17, 13, 3, 1, 0, 9, 43, 50, 20, 3, 1, 0, 16, 124, 220, 136, 36, 4, 1, 0, 28, 338, 866, 773, 296, 52, 4, 1, 0, 51, 941, 3435, 4280, 2303, 596, 78, 5, 1, 0, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 0, 170, 7234, 51061
Offset: 1

Views

Author

David Wasserman, May 26 2005

Keywords

Comments

This classification is concerned with which beads are the same color, not with the colors themselves, so bbabcd is the same structure as aabacd. Cyclic permutations are also the same structure, e.g. abacda is also the same structure. However, order matters: the reverse of aabacd is equivalent to aabcad, which is also on the list.

Examples

			T(6, 4) = 13: {aaabcd, aabacd, aabcad, abacad, aabbcd, aabcbd, aabcdb, aacbbd, aacbdb, ababcd, abacbd, acabdb, abcabd}.
From _Andrew Howroyd_, Apr 09 2017 (Start)
Triangle starts:
1
0  1
0  1   1
0  2   2    1
0  3   5    2    1
0  5  17   13    3    1
0  9  43   50   20    3   1
0 16 124  220  136   36   4  1
0 28 338  866  773  296  52  4 1
0 51 941 3435 4280 2303 596 78 5 1
(End)
		

Crossrefs

Columns 2-6 are A056303, A056304, A056305, A056306, A056307.
Partial row sums include A000048, A002075, A056300, A056301, A056302.
Row sums are A276547.

Programs

  • Mathematica
    A[d_, n_] := A[d, n] = Which[n == 0, 1, n == 1, DivisorSum[d, x^# &], d == 1, Sum[StirlingS2[n, k] x^k, {k, 0, n}], True, Expand[A[d, 1] A[d, n-1] + D[A[d, n-1], x] x]];
    B[n_, k_] := Coefficient[DivisorSum[n, EulerPhi[#] A[#, n/#]&]/n/x, x, k];
    T[n_, k_] := DivisorSum[n, MoebiusMu[n/#] B[#, k]&];
    Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jun 06 2018, after Andrew Howroyd and Robert A. Russell *)
  • PARI
    \\ here R(n) is A152175 as square matrix.
    R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n) = {my(M=R(n)); matrix(n, n, i, k, sumdiv(i, d, moebius(i/d)*M[d,k]))}
    { my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 09 2020

Formula

T(n, k) = Sum_{d|n} mu(n/d) * A152175(d, k). - Andrew Howroyd, Apr 09 2017

A056369 Number of primitive (period n) bracelet structures using exactly five different colored beads.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 16, 85, 434, 2270, 11530, 58397, 290689, 1436669, 7036417, 34286379, 166316979, 804556969, 3884248150, 18731031687, 90269841908, 434955103451, 2096028083116, 10104206843502
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A276543.
Cf. A056306.

Formula

Showing 1-2 of 2 results.