cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A276543 Triangle read by rows: T(n,k) = number of primitive (period n) n-bead bracelet structures using exactly k different colored beads.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 13, 11, 3, 1, 0, 8, 31, 33, 16, 3, 1, 0, 14, 80, 136, 85, 27, 4, 1, 0, 21, 201, 478, 434, 171, 37, 4, 1, 0, 39, 533, 1849, 2270, 1249, 338, 54, 5, 1, 0, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 09 2017

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

Examples

			Triangle starts:
  1
  0  1
  0  1   1
  0  2   2    1
  0  3   5    2    1
  0  5  13   11    3    1
  0  8  31   33   16    3   1
  0 14  80  136   85   27   4  1
  0 21 201  478  434  171  37  4 1
  0 39 533 1849 2270 1249 338 54 5 1
  ...
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Partial row sums include A000046, A056362, A056363, A056364, A056365.
Row sums are A276548.

Programs

  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=(R(n)+Ach(n))/2); Mat(vectorv(n,n,sumdiv(n, d, moebius(d)*M[n/d,])))}
    { my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

Formula

T(n, k) = Sum_{d|n} mu(n/d) * A152176(d, k).

A056363 Number of primitive (period n) bracelet structures using a maximum of four different colored beads.

Original entry on oeis.org

1, 1, 1, 2, 5, 10, 29, 72, 230, 700, 2421, 8308, 30070, 108990, 403188, 1497057, 5607200, 21076570, 79595257, 301492044, 1145558141, 4363503609, 16660196142, 63741248200, 244339616370, 938255682540, 3608668279965, 13900021843855, 53614339995060, 207062143625710
Offset: 0

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

a(n) = Sum_{d|n} mu(d)*A056354(n/d) for n > 0.
a(n) = Sum_{k=1..4} A276543(n, k) for n > 0. - Andrew Howroyd, Oct 26 2019

Extensions

a(0)=1 prepended and terms a(26) and beyond from Andrew Howroyd, Oct 26 2019

A328039 Number of primitive (period n) n-bead bracelet structures which are not periodic palindromes using exactly four different colored beads.

Original entry on oeis.org

0, 0, 0, 1, 2, 10, 32, 129, 468, 1806, 6780, 25917, 98056, 372919, 1414548, 5375974, 20432480, 77773845, 296350460, 1130919576, 4321818986, 16540888897, 63399449652, 243357204415, 935428588930, 3600514267686, 13876474860110, 53546226302319, 206864885150216
Offset: 1

Views

Author

Andrew Howroyd, Oct 02 2019

Keywords

Comments

Permuting the colors of the beads will not change the structure.

Crossrefs

Formula

a(n) = A056368(n) - A056521(n).
Showing 1-3 of 3 results.