cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A276543 Triangle read by rows: T(n,k) = number of primitive (period n) n-bead bracelet structures using exactly k different colored beads.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 13, 11, 3, 1, 0, 8, 31, 33, 16, 3, 1, 0, 14, 80, 136, 85, 27, 4, 1, 0, 21, 201, 478, 434, 171, 37, 4, 1, 0, 39, 533, 1849, 2270, 1249, 338, 54, 5, 1, 0, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 09 2017

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

Examples

			Triangle starts:
  1
  0  1
  0  1   1
  0  2   2    1
  0  3   5    2    1
  0  5  13   11    3    1
  0  8  31   33   16    3   1
  0 14  80  136   85   27   4  1
  0 21 201  478  434  171  37  4 1
  0 39 533 1849 2270 1249 338 54 5 1
  ...
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Partial row sums include A000046, A056362, A056363, A056364, A056365.
Row sums are A276548.

Programs

  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=(R(n)+Ach(n))/2); Mat(vectorv(n,n,sumdiv(n, d, moebius(d)*M[n/d,])))}
    { my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

Formula

T(n, k) = Sum_{d|n} mu(n/d) * A152176(d, k).

A056367 Number of primitive (period n) bracelet structures using exactly three different colored beads.

Original entry on oeis.org

0, 0, 1, 2, 5, 13, 31, 80, 201, 533, 1401, 3822, 10395, 28859, 80201, 225286, 634265, 1796433, 5100325, 14534758, 41513402, 118879249, 341094843, 980661980, 2824223490, 8146897815, 23535345170
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A276543.
Cf. A056304.

Formula

A056368 Number of primitive (period n) bracelet structures using exactly four different colored beads.

Original entry on oeis.org

0, 0, 0, 1, 2, 11, 33, 136, 478, 1849, 6845, 26136, 98406, 373977, 1416249, 5380770, 20440250, 77794939, 296384565, 1131009781, 4321964735, 16541268223, 63400061153, 243358777620, 935431121460, 3600520732809
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A276543.
Cf. A056305.

Formula

A328657 Number of primitive (period n) n-bead bracelet structures which are not periodic palindromes using a maximum of three different colored beads.

Original entry on oeis.org

0, 0, 1, 1, 4, 9, 26, 66, 183, 488, 1342, 3690, 10220, 28470, 79720, 224230, 633040, 1793727, 5097638, 14528640, 41509364, 118868750, 341098474, 980661510, 2824295364, 8147015352, 23535794889, 68085719208, 197213728060, 571919889400, 1660412355602, 4825573629390
Offset: 1

Views

Author

Andrew Howroyd, Oct 24 2019

Keywords

Comments

Permuting the colors of the beads will not change the structure.

Examples

			For n <= 5, the structures are the same as in A328038.
For n = 6, the 9 bracelet structures have the patterns: AABABB, ABCCCC, ABBCCC, ABBBCB, ABBCBC, ABBCCB, ABCBBC, AABBCC, AABCBC.
		

Crossrefs

Formula

a(n) = Sum_{k=1..3} A309784(n, k).
a(n) = A056362(n) - A056514(n).
Showing 1-4 of 4 results.