A002212 Number of restricted hexagonal polyominoes with n cells.
1, 1, 3, 10, 36, 137, 543, 2219, 9285, 39587, 171369, 751236, 3328218, 14878455, 67030785, 304036170, 1387247580, 6363044315, 29323149825, 135700543190, 630375241380, 2938391049395, 13739779184085, 64430797069375, 302934667061301, 1427763630578197
Offset: 0
Examples
G.f. = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + 137*x^5 + 543*x^6 + 2219*x^7 + 9285*x^8 + ...
References
- J. Brunvoll, B. N. Cyvin, and S. J. Cyvin, Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298, Eq 14.
- S. J. Cyvin, J. Brunvoll, G. Xiaofeng, and Z. Fuji, Number of perifusenes with one internal vertex, Rev. Roumaine Chem., 38(1) (1993), 65-78.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- Jean-Luc Baril, José L. Ramírez, and Lina M. Simbaqueba, Counting prefixes of skew Dyck paths, J. Int. Seq., Vol. 24 (2021), Article 21.8.2.
- L. W. Beineke and R. E. Pippert, On the enumeration of planar trees of hexagons, Glasgow Math. J., 15 (1974), 131-147. See V(n).
- L. W. Beineke and R. E. Pippert, On the enumeration of planar trees of hexagons, Glasgow Math. J., 15 (1974), 131-147. [Annotated scanned copy]
- Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
- B. N. Cyvin et al., A class of polygonal systems representing polycyclic conjugated hydrocarbons: Catacondensed monoheptafusenes, Monat. f. Chemie, 125 (1994), 1327-1337 (see U(x)).
- S. J. Cyvin, J. Brunvoll, and B. N. Cyvin, Harary-Read numbers for catafusenes: Complete classification according to symmetry, Journal of mathematical chemistry 9.1 (1992): 19-31.
- S. J. Cyvin and J. Brunvoll, Generating functions for the Harary-Read numbers classified according to symmetry, Journal of mathematical chemistry 9.1 (1992): 33-38.
- S. J. Cyvin et al., Graph-theoretical studies on fluoranthenoids and fluorenoids:enumeration of some catacondensed systems, J. Molec. Struct. (Theochem), 285 (1993), 179-185.
- S. J. Cyvin et al., Enumeration and classification of certain polygonal systems representing polycyclic conjugated hydrocarbons: annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
- D. E. Davenport, L. W. Shapiro, and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012
- Rodrigo De Castro, Andrés Ramírez, and José L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv preprint arXiv:1310.2449 [cs.DM], 2013. See also Sci. Annals Comp. Sci. (2014) Vol. XXIV, Issue 1, 137-171. See p. 141.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Serkan Demiriz, Adem Şahin, and Sezer Erdem, Some topological and geometric properties of novel generalized Motzkin sequence spaces, Rendiconti Circ. Mat. Palermo Ser. 2 (2025) Vol. 74, No. 136. See p. 4.
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
- E. Deutsch, E. Munarini, and S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
- M. Dziemianczuk, Enumerations of plane trees with multiple edges and Raney lattice paths, Discrete Mathematics 337 (2014): 9-24.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 18.
- N. S. S. Gu, N. Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
- C. Heuberger, H. Prodinger, and S. Wagner, The height of multiple edge plane trees, arXiv preprint arXiv:1503.04749 [math.CO], 2015.
- P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
- C. Jean-Louis and A. Nkwanta, Some algebraic structure of the Riordan group, Linear Algebra and its Applications, Nov. 27, 2012. - _N. J. A. Sloane_, Jan 03 2013
- Hana Kim and R. P. Stanley, A refined enumeration of hex trees and related polynomials, Preprint 2015.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see pp. 12-13.
- Lily L. Liu, Positivity of three-term recurrence sequences, Electronic J. Combinatorics, 17 (2010), #R57.
- Rui-Li Liu and Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
- Toufik Mansour and Jose Luis Ramirez, Enumration of Fuss-skew paths, Ann. Math. Inform. 55 (2022) 125-136, table 1.
- Michal Medek, Möbius function of matrix posets, Bachelor Thesis, Charles Univ. (Prague, Czechia 2023).
- H. D. Nguyen and D. Taggart, Mining the OEIS: Ten Experimental Conjectures, 2013; http://citeseerx.ist.psu.edu/pdf/8f2f36f22878c984775ed04368b8893879b99458. Mentions this sequence. - From _N. J. A. Sloane_, Mar 16 2014
- F. Pakovich and A. K. Zvonkin, Minimum degree of the difference of two polynomials over Q, and weighted plane trees, arXiv:1306.4141 [math.NT], 2013.
- F. Pakovich and A. K. Zvonkin, Minimum degree of the difference of two polynomials over Q, and weighted plane trees, Selecta Mathematica, New Ser. 2014.
- J.-B. Priez, A lattice of combinatorial Hopf algebras, Application to binary trees with multiplicities, arXiv preprint arXiv:1303.5538 [math.CO], 2013.
- J.-B. Priez, A lattice of combinatorial Hopf algebras, Application to binary trees with multiplicities, FPSAC 2013 Paris, France DMTCS Proc. AS, 2013, 1167-1179. See also DOI
- Helmut Prodinger, Weighted unary-binary trees, Hex-trees, and Horton-Strahler numbers revisited, arXiv:2106.14782 [math.CO], 2021.
- Helmut Prodinger, Multi-edge trees and 3-coloured Motzkin paths: bijective issues, arXiv:2105.03350 [math.CO], 2021.
- Helmut Prodinger, Partial skew Dyck paths---a kernel method approach, arXiv:2108.09785 [math.CO], 2021.
- Helmut Prodinger, Prefixes of Stanley's Catalan paths with odd returns to the x-axis -- standard version and skew Catalan-Stanley paths, arXiv:2402.01429 [math.CO], 2023.
- R. C. Read, Letter to N. J. A. Sloane, Feb 12 1971 (includes 40 terms of A002212 and A002216)
- E. Rowland and R. Yassawi, Automatic congruences for diagonals of rational functions, arXiv preprint arXiv:1310.8635 [math.NT], 2013.
- A. Sapounakis and P. Tsikouras, On k-colored Motzkin words, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.5.
- R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), #00.1.
- Hua Sun and Yi Wang, A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers, J. Int. Seq. 17 (2014) # 14.5.2.
- Y. Sun and Z. Wang, Consecutive pattern avoidances in non-crossing trees, Graph. Combinat. 26 (2010) 815-832, table 1, {uu,ud}
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 98.
- Y. Wang and Z.-H. Zhang, Combinatorics of Generalized Motzkin Numbers, J. Int. Seq. 18 (2015) # 15.2.4.
- E. X. W. Xia and O. X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, 20 (2013), #P3.
- A. K. Zvonkin, Enumeration of Weighted Plane Trees, 2013.
- Index entries for reversions of series
Crossrefs
Programs
-
Magma
I:= [1,3]; [1] cat [n le 2 select I[n] else ((6*n-3)*Self(n-1)-5*(n-2)*Self(n-2)) div (n+1): n in [1..30]]; // Vincenzo Librandi, Jun 15 2015
-
Maple
t1 := series(1+ (1-3*x-(1-x)^(1/2)*(1-5*x)^(1/2))/(2*x), x, 50): A002212_list := len -> seq(coeff(t1,x,n),n=0..len): A002212_list(40); a[0] := 1: a[1] := 1: for n from 2 to 50 do a[n] := (3*(2*n-1)*a[n-1]-5*(n-2)*a[n-2])/(n+1) od: print(convert(a,list)); # Zerinvary Lajos, Jan 01 2007 a := n -> `if`(n=0,1,simplify(GegenbauerC(n-1, -n, -3/2)/n)): seq(a(n), n=0..23); # Peter Luschny, May 09 2016
-
Mathematica
InverseSeries[Series[(y)/(1+3*y+y^2), {y, 0, 24}], x] (* then A(x)=1+y(x) *) (* Len Smiley, Apr 14 2000 *) (* faster *) a[0]=1;a[1]=1; a[n_]/;n>=2 := a[n] = a[n-1] + Sum[a[i]a[n-1-i],{i,0,n-1}]; Table[a[n],{n,0,14}] (* See COMMENTS above, [David Callan, Oct 14 2012] *) (* fastest *) s[0]=s[1]=1; s[n_]/;n>=2 := s[n] = (3(2n-1)s[n-1]-5(n-2)s[n-2])/(n+1); Table[s[n],{n,0,14 }] (* See Deutsch, Munarini, Rinaldi link, [David Callan, Oct 14 2012] *) (* 2nd fastest *) a[n_] := Hypergeometric2F1[3/2, 1-n, 3, -4]; a[0]=1; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, May 16 2013 *) CoefficientList[Series[(1 - x - Sqrt[1 - 6x + 5x^2])/(2x), {x, 0, 20}], x] (* Nikolaos Pantelidis, Jan 30 2023 *)
-
Maxima
makelist(sum(binomial(n,k)*binomial(n-k,k)*3^(n-2*k)/(k+1),k,0,n/2),n,0,24); /* for a(n+1) */ /* Emanuele Munarini, May 18 2011 */
-
PARI
{a(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1)};
-
PARI
{a(n) = if( n<1, n==0, polcoeff( serreverse( x / (1 + 3*x + x^2) + x * O(x^n)), n))}; /* Michael Somos */
-
PARI
my(N=66,x='x+O('x^N)); Vec((1 - x - sqrt(1-6*x+5*x^2))/(2*x)) \\ Joerg Arndt, Jan 13 2024
-
Sage
def A002212(): x, y, n = 1, 1, 1 while True: yield x n += 1 x, y = y, ((6*n - 3)*y - (5*n - 10)*x) / (n + 1) a = A002212() [next(a) for i in range(24)] # Peter Luschny, Oct 12 2013
Formula
a(0)=1, for n > 0: a(n) = Sum_{j=0..n-1} Sum_{i=0..j} a(i)*a(j-i). G.f.: A(x) = 1 + x*A(x)^2/(1-x). - Mario Catalani (mario.catalani(AT)unito.it), Jun 19 2003
a(n) = Sum_{i=ceiling((n-1)/2)..n-1} (3^(2i+1-n)*binomial(n, i)*binomial(i, n-i-1))/n. - Emeric Deutsch, Jul 23 2002
a(n) = Sum_{k=1..n} binomial(2k, k)*binomial(n-1, k-1)/(k+1), i.e., binomial transform of the Catalan numbers 1, 2, 5, 14, 42, ... (A000108). a(n) = Sum_{k=0..floor((n-1)/2)} 3^(n-1-2*k)*binomial(2k, k)*binomial(n-1, 2k)/(k+1). - Emeric Deutsch, Aug 05 2002
D-finite with recurrence: a(1)=1, a(n) = (3(2n-1)*a(n-1)-5(n-2)*a(n-2))/(n+1) for n > 1. - Emeric Deutsch, Dec 18 2002
a(n) is asymptotic to c*5^n/n^(3/2) with c=0.63.... - Benoit Cloitre, Jun 23 2003
In closed form, c = (1/2)*sqrt(5/Pi) = 0.63078313050504... - Vaclav Kotesovec, Oct 04 2012
Reversion of Sum_{n>0} a(n)x^n = -Sum_{n>0} A001906(n)(-x)^n.
G.f. A(x) satisfies xA(x)^2 + (1-x)(1-A(x)) = 0.
G.f.: (1 - x - sqrt(1 - 6x + 5x^2))/(2x). For n > 1, a(n) = 3*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1). - John W. Layman, Feb 22 2001
The Hankel transform of this sequence gives A001519 = 1, 2, 5, 13, 34, 89, ... E.g., Det([1, 1, 3, 10, 36; 1, 3, 10, 36, 137; 3, 10, 36, 137, 543; 10, 36, 137, 543, 2219; 36, 137, 543, 2219, 9285 ])= 34. - Philippe Deléham, Jan 25 2004
a(m+n+1) = Sum_{k>=0} A091965(m, k)*A091965(n, k) = A091965(m+n, 0). - Philippe Deléham, Sep 14 2005
a(n+1) = Sum_{k=0..n} 2^(n-k)*M(k)*binomial(n,k), where M(k) = A001006(k) is the k-th Motzkin number (from here it follows that a(n+1) and M(n) have the same parity). - Emeric Deutsch, May 10 2007
a(n+1) = Sum_{k=0..n} A097610(n,k)*3^k. - Philippe Deléham, Oct 02 2007
G.f.: 1/(1-x/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-... (continued fraction). - Paul Barry, May 16 2009
G.f.: (1-x)/(1-2x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-.... (continued fraction). - Paul Barry, Oct 17 2009
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1-x) (continued fraction); more generally g.f. C(x/(1-x)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
a(n) = -5^(1/2)/(10*(n+1)) * (5*hypergeom([1/2, n], [1], 4/5) -3*hypergeom([1/2, n+1], [1], 4/5)) (for n>0). - Mark van Hoeij, Nov 12 2009
For n >= 1, a(n) = (1/(2*Pi))*Integral_{x=1..5} x^(n-1)*sqrt((x-1)*(5-x)) dx. - Groux Roland, Mar 16 2011
a(n+1) = [x^n](1-x^2)(1+3*x+x^2)^n. - Emanuele Munarini, May 18 2011
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows (with 3,2,2,2,... as the main diagonal):
3, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 2, 1, 0, 0, ...
1, 1, 1, 2, 1, 0, ...
1, 1, 1, 1, 2, 0, ...
...
Alternatively, let M = the previous matrix but change the 3 to a 2. Then a(n) = sum of top row terms of M^(n-1). (End)
a(n) = hypergeometric([1-n,3/2],[3],-4), for n>0. - Peter Luschny, Aug 15 2012
a(n) = GegenbauerC(n-1, -n, -3/2)/n for n >= 1. - Peter Luschny, May 09 2016
E.g.f.: 1 + Integral (exp(3*x) * BesselI(1,2*x) / x) dx. - Ilya Gutkovskiy, Jun 01 2020
G.f.: 1 + x/G(0) with G(k) = (1 - 3*x - x^2/G(k+1)) (continued fraction). - Nikolaos Pantelidis, Dec 12 2022
From Peter Bala, Feb 03 2024: (Start)
G.f.: 1 + x/(1 - x) * c(x/(1 - x))^2 = 1 + x/(1 - 5*x) * c(-x/(1 - 5*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n+1) = Sum_{k = 0..n} binomial(n, k)*Catalan(k+1).
a(n+1) = hypergeom([-n, 3/2], [3], -4).
a(n+1) = 5^n * Sum_{k = 0..n} (-5)^(-k)*binomial(n, k)*Catalan(k+1).
a(n+1) = 5^n * hypergeom([-n, 3/2], [3], 4/5). (End)
Comments