A002060 Number of partitions of an n-gon into (n-5) parts.
4, 60, 550, 4004, 25480, 148512, 813960, 4263600, 21573816, 106234700, 511801290, 2421810300, 11289642000, 51967090560, 236635858800, 1067518772640, 4776759725400, 21221827263000, 93687293423724, 411270420524040, 1796296260955504, 7809983743284800, 33816739954270000
Offset: 7
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- A. Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.
Programs
-
Maple
V := proc(r,k) local a ,t; a := k-1; for t from k-2 to 1 by -1 do a := a*(r+t)/(t+2) ; end do: for t from 3 to k+1 do a := a*(r-t)/(k-t+2) ; end do: a ; end proc: A002060 := proc(n) V(n,n-5) ; end proc: seq(A002060(n),n=7..25) ; # R. J. Mathar, Nov 26 2011
-
Mathematica
V[r_, k_] := Module[{a, t}, a = k - 1; For[t = k - 2, t >= 1, t--, a = a*(r + t)/(t + 2)]; For[t = 3, t <= k + 1, t++, a = a*(r - t)/(k - t + 2)]; a]; A002060[n_] := V[n, n - 5]; Table[A002060[n], {n, 7, 29}] (* Jean-François Alcover, Mar 10 2023, after R. J. Mathar *)
Extensions
More terms from Hugo Pfoertner, Dec 26 2021
Comments