cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002076 Number of equivalence classes of base-3 necklaces of length n, where necklaces are considered equivalent under both rotations and permutations of the symbols.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 26, 53, 146, 369, 1002, 2685, 7434, 20441, 57046, 159451, 448686, 1266081, 3588002, 10195277, 29058526, 83018783, 237740670, 682196949, 1961331314, 5648590737, 16294052602, 47071590147, 136171497650, 394427456121, 1143839943618, 3320824711205
Offset: 0

Views

Author

Keywords

Comments

Number of set partitions of an oriented cycle of length n with 3 or fewer subsets. - Robert A. Russell, Nov 05 2018

Examples

			E.g., a(2) = 2 as there are two equivalence classes of the 9 strings {00,01,02,10,11,12,20,21,22}: {00,11,22} form one equivalence class and {01,02,10,12,20,21} form the other. To see that (for example) 01 and 02 are equivalent, rotate 01 to 10 and then subtract 1 mod 3 from each element in 10 to get 02.
For a(6)=26, there are 18 achiral patterns (AAAAAA, AAAAAB, AAAABB, AAABAB, AAABBB, AABAAB, AABABB, ABABAB, AAAABC, AAABAC, AAABCB, AABAAC, AABBCC, AABCBC, AABCCB, ABABAC, ABACBC, ABCABC) and 8 chiral patterns in four pairs (AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC). - _Robert A. Russell_, Nov 05 2018
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A056353 (unoriented), A320743 (chiral), A182522 (achiral).

Programs

  • Mathematica
    Adn[d_, n_] := Module[{ c, t1, t2}, t2 = 0; For[c = 1, c <= d, c++, If[Mod[d, c] == 0 , t2 = t2 + (x^c/c)*(E^(c*z) - 1)]]; t1 = E^t2; t1 = Series[t1, {z, 0, n+1}]; Coefficient[t1, z, n]*n!]; Pn[n_] := Module[{ d, e, t1}, t1 = 0; For[d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*Adn[d, n/d]/n]]; t1/(1 - x)]; Pnq[n_, q_] := Module[{t1}, t1 = Series[Pn[n], {x, 0, q+1}] ; Coefficient[t1, x, q]]; a[n_] := Pnq[n, 3]; Print[1]; Table[Print[an = a[n]]; an, {n, 1, 28}] (* Jean-François Alcover, Oct 04 2013, after N. J. A. Sloane's Maple code *)
    (* This Mathematica program uses Gilbert and Riordan's recurrence formula, which they recommend for calculations: *)
    Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &],
      Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
    Join[{1},Table[SeriesCoefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &] /(n (1 - x)), {x, 0, 3}], {n,40}]]  (* Robert A. Russell, Feb 24 2018 *)
    From Robert A. Russell, May 29 2018: (Start)
    Join[{1},Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 6], 3 StirlingS2[n/#+2, 3] - 9 StirlingS2[n/#+1, 3] + 6 StirlingS2[n/#, 3], Divisible[#, 3], 2 StirlingS2[n/#+2, 3] - 7 StirlingS2[n/#+1, 3] + 6 StirlingS2[n/#, 3], Divisible[#, 2], 2 StirlingS2[n/#+2, 3] - 6 StirlingS2[n/#+1, 3] + 4 StirlingS2[n/#, 3], True, StirlingS2[n/#+2, 3] - 4 StirlingS2[n/#+1, 3] + 4 StirlingS2[n/#, 3]] &], {n,40}]] (* or *)
    mx = 40; CoefficientList[Series[1 - Sum[(EulerPhi[d] / d) Which[
      Divisible[d, 6], Log[1 - 3x^d], Divisible[d, 3], (Log[1 - 3x^d] +
      Log[1 - x^d]) / 2, Divisible[d, 2], 2 Log[1 - 3x^d] / 3, True, (Log[1 - 3x^d] + 3 Log[1 - x^d]) / 6], {d, 1, mx}], {x, 0, mx}], x]
    (End)
    (* Adnk(n,d,k) is coefficient of x^k in A(d,n)(x) from Gilbert & Riordan *)
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#]&], Boole[n==0 && k==0]]
    k=3; Join[{1},Table[Sum[DivisorSum[n,EulerPhi[#] Adnk[#,n/#,j] &],{j,k}]/n,{n,40}]] (* Robert A. Russell, Nov 05 2018 *)

Formula

Reference gives formula.
From Robert A. Russell, May 29 2018: (Start)
For n>0, a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 6] * (3*S2(n/d+2, 3) - 9*S2(n/d+1, 3) + 6*S2(n/d, 3)) + [d==3 mod 6] * (2*S2(n/d+2, 3) - 7*S2(n/d+1, 3) + 6*S2(n/d, 3)) + [d==2 mod 6 | d==4 mod 6] * (2*S2(n/d+2, 3) - 6*S2(n/d+1, 3) + 4*S2(n/d, 3)) + [d==1 mod 6 | d=5 mod 6] * (S2(n/d+2, 3) - 4*S2(n/d+1, 3) + 4*S2(n/d, 3))), where S2(n,k) is the Stirling subset number, A008277.
G.f.: 1 - Sum_{d>0} (phi(d) / d) * ([d==0 mod 6] * log(1-3x^d) +
[d==3 mod 6] * (log(1-3x^d) + log(1-x^d)) / 2 +
[d==2 mod 6 | d==4 mod 6] * 2*log(1-3x^d) / 3 +
[d==1 mod 6 | d=5 mod 6] * (log(1-3x^d) + 3*log(1-x^d)) / 6).
(End)

Extensions

Better description and more terms from Mark Weston (mweston(AT)uvic.ca), Oct 06 2001
a(0)=1 prepended by Robert A. Russell, Nov 05 2018