A002079 Number of N-equivalence classes of threshold functions of exactly n variables.
2, 1, 2, 9, 96, 2690, 226360, 64646855, 68339572672
Offset: 0
References
- S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 8.
- S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alastair D. King, Comments on A002080 and related sequences based on threshold functions, Mar 17 2023.
- Muroga, Saburo, Iwao Toda, and Satoru Takasu, Theory of majority decision elements, Journal of the Franklin Institute 271.5 (1961): 376-418. [Annotated scans of pages 413 and 414 only]
- S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
- Index entries for sequences related to Boolean functions
Formula
Extensions
Better description from Alastair King, Mar 17 2023.