cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002120 a(1) = 0, a(2) = -2; for n > 2, a(n) + a(n-2) - a(n-3) - a(n-5) - ... - a(n-p) = (-1)^(n+1)*n if n is prime, otherwise = 0, where p = largest prime < n.

Original entry on oeis.org

0, -2, 3, 2, 0, 1, 7, 2, -6, 8, 22, -7, 0, 33, 3, -14, 51, 46, -19, 12, 94, 42, -23, 113, 150, -54, 48, 345, 116, -109, 403, 498, -140, 219, 1057, 326, -259, 1271, 1641, -308, 656, 3396, 1161, -790, 4269, 5357, -987, 2257, 10934, 3958, -1986, 13678, 17278, -2492, 7447, 35569, 13778, -5860, 44368, 56403, -6405
Offset: 1

Views

Author

Keywords

Comments

Arises in studying the Goldbach conjecture.

References

  • P. A. MacMahon, Properties of prime numbers deduced from the calculus of symmetric functions, Proc. London Math. Soc., 23 (1923), 290-316. [Coll. Papers, Vol. II, pp. 354-382] [The sequence e_n]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    M:=90; e:=array(0..M); e[1]:=0; e[2]:=-2; for n from 3 to M do t1:=-e[n-2]; if isprime(n) then t1:=t1+(-1)^(n+1)*n; fi; for k from 2 to n do p := ithprime(k); if p < n then t1 := t1 + e[n-p]; fi; od: e[n]:=t1; od: [seq(e[n],n=1..M)];

Formula

a(n) = (-1)^(n+1)*n*A010051(n)+Sum_{k=1..n-1} (-1)^(n-k+1)*A010051(n-k)*a(k). - Vladeta Jovovic, May 08 2003

Extensions

More terms from Vladeta Jovovic, May 08 2003
Edited by N. J. A. Sloane, Dec 03 2006