A002149 Largest prime p==3 (mod 8) such that Q(sqrt(-p)) has class number 2n+1.
163, 907, 2683, 5923, 10627, 15667, 20563, 34483, 37123, 38707, 61483, 90787, 93307, 103387, 166147, 133387, 222643, 210907, 158923, 253507, 296587
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- David Broadhurst, Table of n, a(n) for n = 0..739 (conjectural; see comment)
- Steven Arno, M. L. Robinson, and Ferrell S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arith. 83 (1998), pp. 295-330.
- D. Shanks, Review of R. B. Lakein and S. Kuroda, Tables of class numbers h(-p) for fields Q(sqrt(-p)), p <= 465071, Math. Comp., 24 (1970), 491-492.
Extensions
Edited by Dean Hickerson, Mar 17 2003
Comments