cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002179 Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,2).

Original entry on oeis.org

0, 1, 3, 12, 50, 27, 1323, -928, 1080, -48525, -3237113, -7587864, -31268252574, -770720657, -232936065, -179731134720, -542023437008852, -3212744374395, -926840515700222955, -389358194177500, -17858352159793110
Offset: 2

Views

Author

Keywords

References

  • W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]*StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n-1]*cn[n-1, 2]; Table[a[n], {n, 2, 22}] (* Jean-François Alcover, Oct 08 2013 *)
  • PARI
    cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
    
  • PARI
    ncn(n)= denominator(cn(n))*cn(n); nk(n,k)= if(k<0 || k>n,0,ncn(n)[ k+1 ]); A002177(n)= nk(n,2)

Extensions

More terms from Michael Somos

A100643 Numerator of Cotesian number C(n,1).

Original entry on oeis.org

1, 2, 3, 16, 25, 9, 3577, 2944, 15741, 26575, 4495513, 12504, 56280729661, 44436679, 29505985, 63813303296, 10004122565473, 6162434073, 965843331633293, 167791152125, 3181977977743649, 506778072148248857, 27256898762578419475451, 585293809045696
Offset: 1

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

Examples

			1/2, 2/3, 3/8, 16/45, 25/96, 9/35, 3577/17280, 2944/14175, 15741/89600, 26575/149688, 4495513/29030400, 12504/79625, 56280729661/402361344000, 44436679/312741000, ... = A100623/A100624 = A002178/A002176 (the latter not being in lowest terms)
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.

Crossrefs

See A002176 for further references. A diagonal of A100640/A100641.

A100644 Denominator of Cotesian number C(n,1).

Original entry on oeis.org

2, 3, 8, 45, 96, 35, 17280, 14175, 89600, 149688, 29030400, 79625, 402361344000, 312741000, 229605376, 488462349375, 83691159552000, 50697046400, 8604790260498432, 1470076286679, 29967718809600000, 4694524604733600000, 269760174666625843200000, 5699209469078125
Offset: 1

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

Examples

			1/2, 2/3, 3/8, 16/45, 25/96, 9/35, 3577/17280, 2944/14175, 15741/89600, 26575/149688, 4495513/29030400, 12504/79625, 56280729661/402361344000, 44436679/312741000, ... = A100623/A100624 = A002178/A002176 (the latter not being in lowest terms)
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.

Crossrefs

See A002176 for further references. A diagonal of A100640/A100641.
Showing 1-3 of 3 results.