cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002189 Pseudo-squares: a(n) = the least nonsquare positive integer which is 1 mod 8 and is a (nonzero) quadratic residue modulo the first n odd primes.

Original entry on oeis.org

17, 73, 241, 1009, 2641, 8089, 18001, 53881, 87481, 117049, 515761, 1083289, 3206641, 3818929, 9257329, 22000801, 48473881, 48473881, 175244281, 427733329, 427733329, 898716289, 2805544681, 2805544681, 2805544681
Offset: 0

Views

Author

Keywords

Comments

To save the reader's time, note that the 1965 article by Atkin does not appear to be related to this sequence. - N. J. A. Sloane, May 10 2025

Examples

			a(0) = 17 since 1 + 8*0 and 1 + 8*1 are squares, 17 = 1 + 8*2 is not and the quadratic residue condition is satisfied vacuosly. - _Michael Somos_, Nov 24 2018
		

References

  • A. O. L. Atkin, On pseudo-squares, Proc. London Math. Soc., 14A (1965), 22-27.(See comment above)
  • Michael A. Bender, R Chowdhury, A Conway, The I/O Complexity of Computing Prime Tables, In: Kranakis E., Navarro G., Chávez E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science, vol 9644. Springer, Berlin, Heidelberg. See Footnote 9.
  • D. H. Lehmer, A sieve problem on "pseudo-squares", Math. Tables Other Aids Comp., 8 (1954), 241-242.
  • D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in two entries, N2175 and N2326.).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. C. Williams and Jeffrey Shallit, Factoring integers before computers, pp. 481-531 of Mathematics of Computation 1943-1993 (Vancouver, 1993), Proc. Symp. Appl. Math., Vol. 48, Amer. Math. Soc. 1994.
  • Kjell Wooding and H. C. Williams, "Doubly-focused enumeration of pseudosquares and pseudocubes". Proceedings of the 7th International Algorithmic Number Theory Symposium (ANTS VII, 2006).

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = (pp = Prime[ Range[2, n+1]]; k = If[ n == 0, 9, a[n-1] - 8]; While[ True, k += 8; If[ ! IntegerQ[ Sqrt[k]] && If[ Scan[ If[ ! (JacobiSymbol[k, #] == 1 ), Return[ False]] & , pp], , False, True], Break[]]]; k); Table[ Print[ an = a[n]]; an, {n, 0, 24}] (* Jean-François Alcover, Sep 30 2011 *)
    a[ n_] := If[ n < 0, 0, Module[{k = If[ n == 0, 9, a[n - 1] - 8]}, While[ True, If[! IntegerQ[Sqrt[k += 8]] && Do[ If[ JacobiSymbol[k, Prime[i]] != 1, Return @ 0], {i, 2, n + 1}] =!= 0, Return @ k]]]]; (* Michael Somos, Nov 24 2018 *)
  • PARI
    a(n)=n=prime(n+1);for(s=4,1e9,forstep(k=(s^2+7)>>3<<3+1, s^2+2*s, 8, forprime(p=3, n, if(kronecker(k,p)<1,next(2)));return(k))) \\ Charles R Greathouse IV, Mar 29 2012

Extensions

The PSAM reference gives a table through p = 223 (the b-file here has many more terms).
More terms from Don Reble, Nov 14 2006
Additional references from Charles R Greathouse IV, Oct 13 2008