cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002198 Denominators of coefficients for numerical integration.

Original entry on oeis.org

24, 5760, 967680, 464486400, 122624409600, 2678117105664000, 64274810535936000, 149852129706639360000, 669659197233029971968000, 8839501403475995629977600000, 4879404774718749587747635200000
Offset: 0

Views

Author

Keywords

Comments

The denominators of these coefficients for numerical integration are a combination of the Bernoulli numbers B{2k}, the central factorial numbers A008956(n, k) and the factor 4^n*(2*n+1)!. - Johannes W. Meijer, Jan 27 2009

References

  • H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag., 36 (1945), 216-218.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002197.
See A000367, A006954, A008956 and A002671 for underlying sequences.
Factor of the LS1[ -2,n] matrix coefficients in A160487.

Programs

  • Maple
    nmax:=10: for n from 0 to nmax do A008956(n, 0) := 1: A008956(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do A008956(n, k) := (2*n-1)^2*A008956(n-1, k-1) + A008956(n-1, k) od: od:
    for n from 0 to nmax do Delta(n) := add((1-2^(2*k1-1)) * (-1)^k1 * (bernoulli(2*k1)/(2*k1)) * A008956(n, n+1-k1), k1=1..n+1) / (2*4^(n)*(2*n+1)!) end do: a:=n-> denom (Delta(n)): seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 27 2009, Revised Sep 21 2012

Formula

a(n) = denominator(Sum_{k=1..n+1}((1-2^(2*k-1))*(-1)^k*(B_{2k}/(2*k))*A008956(n, n+1-k)) / (2*4^(n)*(2*n+1)!)) for n >= 0. - Johannes W. Meijer, Jan 27 2009

Extensions

Two more terms and editing by Johannes W. Meijer, Sep 21 2012