A002198 Denominators of coefficients for numerical integration.
24, 5760, 967680, 464486400, 122624409600, 2678117105664000, 64274810535936000, 149852129706639360000, 669659197233029971968000, 8839501403475995629977600000, 4879404774718749587747635200000
Offset: 0
Keywords
References
- H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag., 36 (1945), 216-218.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag., 36 (1945), 216-218. [Annotated scanned copy]
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 545.
Crossrefs
Programs
-
Maple
nmax:=10: for n from 0 to nmax do A008956(n, 0) := 1: A008956(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do A008956(n, k) := (2*n-1)^2*A008956(n-1, k-1) + A008956(n-1, k) od: od: for n from 0 to nmax do Delta(n) := add((1-2^(2*k1-1)) * (-1)^k1 * (bernoulli(2*k1)/(2*k1)) * A008956(n, n+1-k1), k1=1..n+1) / (2*4^(n)*(2*n+1)!) end do: a:=n-> denom (Delta(n)): seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 27 2009, Revised Sep 21 2012
Formula
a(n) = denominator(Sum_{k=1..n+1}((1-2^(2*k-1))*(-1)^k*(B_{2k}/(2*k))*A008956(n, n+1-k)) / (2*4^(n)*(2*n+1)!)) for n >= 0. - Johannes W. Meijer, Jan 27 2009
Extensions
Two more terms and editing by Johannes W. Meijer, Sep 21 2012
Comments