cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A008956 Triangle of central factorial numbers |4^k t(2n+1,2n+1-2k)| read by rows (n>=0, k=0..n).

Original entry on oeis.org

1, 1, 1, 1, 10, 9, 1, 35, 259, 225, 1, 84, 1974, 12916, 11025, 1, 165, 8778, 172810, 1057221, 893025, 1, 286, 28743, 1234948, 21967231, 128816766, 108056025, 1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225, 1, 680
Offset: 0

Views

Author

Keywords

Comments

The n-th row gives the coefficients in the expansion of Product_{i=0..n-1} (x+(2i+1)^2), highest powers first (see the discussion of central factorial numbers in A008955). - N. J. A. Sloane, Feb 01 2011
Descending row polynomials in x^2 evaluated at k generate odd coefficients of e.g.f. sin(arcsin(kt)/k): 1, x^2 - 1, 9x^4 - 10x^2 + 1, 225x^6 - 259x^4 + 34x^2 - 1, ... - Ralf Stephan, Jan 16 2005
From Johannes W. Meijer, Jun 18 2009: (Start)
We define (Pi/2)*Beta(n-1/2-z/2,n-1/2+z/2)/Beta(n-1/2,n-1/2) = (Pi/2)*Gamma(n-1/2-z/2)* Gamma(n-1/2+z/2)/Gamma(n-1/2)^2 = sum(BG2[2m,n]*z^(2m), m = 0..infinity) with Beta(z,w) the Beta function. Our definition leads to BG2[2m,1] = 2*beta(2m+1) and the recurrence relation BG2[2m,n] = BG2[2m,n-1] - BG2[2m-2,n-1]/(2*n-3)^2 for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .. , with beta(m) = sum((-1)^k/(1+2*k)^m, k=0..infinity). We observe that beta(2m+1) = 0 for m = -1, -2, -3, .. .We found for the BG2[2*m,n] = sum((-1)^(k+n)*t2(n-1,k-1)* 2*beta(2*m-2*n+2*k+1),k=1..n)/((2*n-3)!!)^2 with the central factorial numbers t2(n,m) as defined above; see also the Maple program.
From the BG2 matrix and the closely related EG2 and ZG2 matrices, see A008955, we arrive at the LG2 matrix which is defined by LG2[2m-1,1] = 2*lambda(2*m) and the recurrence relation LG2[2*m-1,n] = LG2[2*m-3,n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LG2[2*m-1,n-1]/(2*n-1) for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .. , with lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function. We found for the matrix coefficients LG2[2m-1,n] = sum((-1)^(k+1)* t2(n-1,k-1)*2*lambda(2*m-2*n+2*k)/((2*n-1)!!*(2*n-3)!!), k=1..n) and we see that the central factorial numbers t2(n,m) once again play a crucial role.
(End)

Examples

			Triangle begins:
[1]
[1, 1]
[1, 10, 9]
[1, 35, 259, 225]
[1, 84, 1974, 12916, 11025]
[1, 165, 8778, 172810, 1057221, 893025]
[1, 286, 28743, 1234948, 21967231, 128816766, 108056025]
[1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225]
...
		

References

  • P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989). [From Johannes W. Meijer, Jun 18 2009]
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

Crossrefs

Cf. A008958.
Columns include A000447, A001823. Right-hand columns include A001818, A001824, A001825. Cf. A008955.
Appears in A160480 (Beta triangle), A160487 (Lambda triangle), A160479 (ZL(n) sequence), A161736, A002197 and A002198. - Johannes W. Meijer, Jun 18 2009
Cf. A162443 (BG1 matrix) and A162448 (LG1 matrix). - Johannes W. Meijer, Jul 06 2009
Cf. A001147.

Programs

  • Haskell
    a008956 n k = a008956_tabl !! n !! k
    a008956_row n = a008956_tabl !! n
    a008956_tabl = [1] : f [1] 1 1 where
       f xs u t = ys : f ys v (t * v) where
         ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
         v = u + 2
    -- Reinhard Zumkeller, Dec 24 2013
  • Maple
    f:=n->mul(x+(2*i+1)^2,i=0..n-1);
    for n from 0 to 12 do
    t1:=eval(f(n)); t1d:=degree(t1);
    t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
    lprint(t2);
    od: # N. J. A. Sloane, Feb 01 2011
    A008956 := proc(n,k) local i ; mul( x+2*i-2*n-1,i=1..2*n) ; expand(%) ; coeftayl(%,x=0,2*(n-k)) ; abs(%) ; end: for n from 0 to 10 do for k from 0 to n do printf("%a,",A008956(n,k)) ; od: od: # R. J. Mathar, May 29 2009
    nmax:=7: for n from 0 to nmax do t2(n, 0):=1: t2(n, n):=(doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do t2(n, k) := (2*n-1)^2*t2(n-1, k-1)+t2(n-1, k) od: od: seq(seq(t2(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
  • Mathematica
    t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n-1)!!)^2; t[n_, k_] := t[n, k] = (2*n-1)^2*t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Johannes W. Meijer *)
  • PARI
    {T(n, k) = if( n<=0, k==0, (-1)^k * polcoeff( numerator( 2^(2*n -1) / sum(j=0, 2*n - 1, binomial( 2*n - 1, j) / (x + 2*n - 1 - 2*j))), 2*n - 2*k))}; /* Michael Somos, Feb 24 2003 */
    

Formula

Conjecture row sums: Sum_{k=0..n} T(n,k) = |A101927(n+1)|. - R. J. Mathar, May 29 2009
May be generated by the recurrence t2(n,k) = (2*n-1)^2*t2(n-1,k-1)+t2(n-1,k) with t2(n,0) = 1 and t2(n,n)=((2*n-1)!!)^2. - Johannes W. Meijer, Jun 18 2009

Extensions

More terms from Vladeta Jovovic, Apr 16 2000
Edited by N. J. A. Sloane, Feb 01 2011

A160487 The Lambda triangle.

Original entry on oeis.org

1, -107, 10, 59845, -7497, 210, -6059823, 854396, -35574, 420, 5508149745, -827924889, 41094790, -765534, 4620, -8781562891079, 1373931797082, -75405128227, 1738417252, -17219202, 60060
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009, Sep 18 2012

Keywords

Comments

The coefficients of the LS1 matrix are defined by LS1[2*m,n] = int(y^(2*m)/(sinh(y))^(2*n-1),y=0..infinity)/factorial(2*m) for m = 1, 2, 3, .. and n = 1, 2, 3, .. under the condition that n <= m.
This definition leads to LS1[2*m,n=1] = 2*lambda(2*m+1), for m = 1, 2, .. , and the recurrence relation LS1[2*m,n] = ((2*n-3)/(2*n-2))*(LS1[2*m-2,n-1]/(2*n-3)^2- LS1[2*m,n-1]). As usual lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function.
These two formulas enable us to determine the values of the LS1[2*m,n] coefficients, for all integers m and all positive integers n, but not for all n. If we choose, somewhat but not entirely arbitrarily, LS1[m=0,n=1] = gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the LS1 matrix, for m = 0, 1, 2, .. , and n = 2, 3, 4 .. , can be generated with the GL(z;n) polynomials for which we found the following general expression GL(z;n) = (h(n)*CFN2(z;n)*GL(z;n=1) + LAMBDA(z;n))/p(n).
The CFN2(z;n) polynomials depend on the central factorial numbers A008956.
The LAMBDA(z;n) are the Lambda polynomials which lead to the Lambda triangle.
The zero patterns of the Lambda polynomials resemble a UFO. These patterns resemble those of the Eta, Zeta and Beta polynomials, see A160464, A160474 and A160480.
The first Maple algorithm generates the coefficients of the Lambda triangle. The second Maple algorithm generates the LS1[2*m,n] coefficients for m= -1, -2, -3, .. .
Some of our results are conjectures based on numerical evidence.

Examples

			The first few rows of the triangle LAMBDA(n,m) with n=2,3,.. and m=1,2,.. are
  [1]
  [ -107, 10]
  [59845, -7497, 210]
  [ -6059823, 854396, -35574, 420]
The first few LAMBDA(z;n) polynomials are
  LAMBDA (z;n=2) = 1
  LAMBDA (z;n=3) = -107 +10*z^2
  LAMBDA (z;n=4) = 59845-7497*z^2+210*z^4
The first few CFN2(z;n) polynomials are
  CFN2(z;n=2) = (z^2-1)
  CFN2(z;n=3) = (z^4-10*z^2+9)
  CFN2(z;n=4) = (z^6- 35*z^4+259*z^2-225)
The first few generating functions GL(z;n) are:
  GL(z;n=2) = (6*(z^2-1)*GL(z,n=1) + (1)) /12
  GL(z;n=3) = (60*(z^4-10*z^2+9)*GL(z,n=1)+ (-107+10*z^2)) / 1440
  GL(z;n=4) = (1260*( z^6- 35*z^4+259*z^2-225)*GL(z,n=1) + (59845-7497*z^2+ 210*z^4))/907200
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

Crossrefs

A160488 equals the first left hand column.
A160476 equals the first right hand column and 6*h(n).
A160489 equals the rows sums.
A160490 equals the p(n) sequence.
A160479 equals the ZL(n) sequence.
A001620 is the Euler-Mascheroni constant gamma.
The LS1[ -2, n] coefficients lead to A002197, A002198 and A058962.
The LS1[ -2*m, 1] coefficients equal (-1)^(m+1)*A036282/A036283.
The CFN2(z, n) and the cfn2(n, k) lead to A008956.
Cf. The Eta, Zeta and Beta triangles A160464, A160474 and A160480.
Cf. A162448 (LG1 matrix)

Programs

  • Maple
    nmax:=7; for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1, n), k1=1..n) / (2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1) / (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n)/ factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: for n from 2 to nmax do LAMBDA(n, 1) := p(n)*f(n) end do: mmax:=nmax: for n from 2 to nmax do LAMBDA(n, n) := 0 end do: for n from 1 to nmax do b(n) := (2*n)*(2*n-1)*denom(Delta(n-1))/ (2^(2*n)*(2*n-1)) end do: c(1) := b(1): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(2*n+2)* (2*n+1), b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)/(6*(2*n)!) end do: for n from 1 to nmax-1 do ZL(n+2) := cm(n+1)/cm(n) end do: for m from 2 to mmax do for n from m+1 to nmax do LAMBDA(n, m) := ZL(n)*(LAMBDA(n-1, m-1)-(2*n-3)^2*LAMBDA(n-1, m)) end do end do; seq(seq(LAMBDA(n,m), m=1..n-1), n=2..nmax);
    # End first program.
    nmax1:=10; m:=1; LS1row:=-2*m; for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: mmax1:=nmax1: for m1 from 1 to mmax1 do LS1[-2*m1, 1] := 2*(1-2^(-(-2*m1+1)))*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do LS1[ -2*m1, n] := sum((-1)^(k1+1)*cfn2(n-1,k1-1)* LS1[2*k1-2*n-2*m1, 1], k1=1..n)/(2*n-2)! od: od: seq(LS1[ -2*m, n], n=1..nmax1-m+1);
    # End second program.

Formula

We discovered a remarkable relation between the Lambda triangle coefficients Lambda(n,m) = ZL(n)*(Lambda(n-1,m-1)-(2*n-3)^2*Lambda(n-1,m)) for n = 3, 4, .. and m = 2, 3, .. . See A160488 for LAMBDA(n,m=1) and furthermore LAMBDA(n,n) = 0 for n = 2, 3, .. .
We observe that the ZL(n) = A160479(n) sequence also rules the Zeta triangle A160474.
The generating functions GL(z;n) of the coefficients in the matrix columns are defined by
GL(z;n) = sum(LS1[2*m-2,n]*z^(2*m-2), m=1..infinity), with n = 1, 2, 3, .. .
This definition, and our choice of LS1[m=0,n=1] = gamma, leads to GL(z;n=1) = -2*Psi(1-z)+Psi(1-(z/2))-(Pi/2)*tan(Pi*z/2) with Psi(z) the digamma-function. Furthermore we discovered that GL(z;n) =GL(z;n-1)*(z^2/((2*n-2)*(2*n-3)) -(2*n-3)/((2*n-2)))+LS1[ -2,n-1]/((2*n-2)*(2*n-3)) for n = 2, 3 , .. . with LS1[ -2,n] = (-1)^(n-1)*4*A058962(n-1)*A002197(n-1)/A002198(n-1) for n = 1, 2, .. , with A058962(n-1) = 2^(2*n-2)*(2*n-1).
We found the following general expression for the GL(z;n) polynomials, for n = 2, 3, ..
GL(z;n) = (h(n)*CFN2(z;n)*GL(z;n=1) + LAMBDA(z;n))/p(n) with
h(n) = 6*A160476(n) and p(n) = A160490(n).

A162448 Numerators of the column sums of the LG1 matrix.

Original entry on oeis.org

-11, 863, -215641, 41208059, -9038561117, 28141689013943, -2360298440602051, 3420015713873670001, -147239749512798268300237, 176556159649301309969405807, -178564975300377173768513546347
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The LG1 matrix coefficients are defined by LG1[2m,1] = 2*lambda(2m+1) for m = 1, 2, .. , and the recurrence relation LG1[2*m,n] = LG1[2*m-2,n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LG1[2*m,n-1]/(2*n-1) with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. , under the condition that n <= m. As usual lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function. For the LG2 matrix, the even counterpart of the LG1 matrix, see A008956.
These two formulas enable us to determine the values of the LG1[2*m,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, LG1[0,1] = gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the LG1 matrix, for m >= 1 and n >= 2, can be generated with GFL(z;n) = (hg(n)*CFN2(z;n)*GFL(z;n=1) + LAMBDA(z;n))/pg(n) with pg(n) = 6*(2*n-3)!!*(2*n-1)!!*A160476(n) and hg(n) = 6*A160476(n). For the CFN2(z;n) and the LAMBDA(z;n) see A160487.
The values of the column sums cs(n) = sum(LG1[2*m,n], m = 0.. infinity), for n >= 2, can be determined with the first Maple program. In this program we have made use of the remarkable fact that if we take LGx[2*m,n] = 2, for m >= 0, and LGx[ -2,n] = LG1[ -2,n] and assume that the recurrence relation remains the same we find that the column sums of this new matrix converge to the same values as the original cs(n).
The LG1[2*m,n] matrix coefficients can be generated with the second Maple program.
The LG1 matrix is related to the LS1 matrix, see A160487 and the formulas below.

Examples

			The first few generating functions GFL(z;n) are:
GFL(z;2) = (6*(z^2-1)*GFL(z;1)+(1))/18
GFL(z;3) = (60*(z^4-10*z^2+9)*GFL(z;1)+(-107+10*z^2))/2700
GFL(z;4) = (1260*(z^6-35*z^4+259*z^2-225)*GFL(z;1)+(59845-7497*z^2+210*z^4))/ 1984500
		

Crossrefs

See A162449 for the denominators of the column sums.
The LAMBDA(z, n) polynomials and the LS1 matrix lead to the Lambda triangle A160487.
The CFN2(z, n), the cfn2(n, k) and the LG2 matrix lead to A008956.
The pg(n) and hg(n) sequences lead to A160476.
The LG1[ -2, n] lead to A002197, A002198, A061549 and A001790.
Cf. A001620 (gamma) and A079484 ((2n-1)!!*(2n+1)!!).
Cf. A162440 (EG1 matrix), A162443 (BG1 matrix) and A162446 (ZG1 matrix)

Programs

  • Maple
    nmax := 12; mmax := nmax: for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1)+cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))*(-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1, n-k1), k1=1..n)/ (2*4^(n-1)*(2*n-1)!) od: for n from 1 to nmax do LG1[ -2, n] := (-1)^(n+1)*4*Delta(n-1)* 4^(2*n-2)/binomial(2*n-2, n-1) od: for n from 1 to nmax do LGx[ -2, n] := LG1[ -2, n] od: for m from 0 to mmax do LGx[2*m, 1] := 2 od: for n from 2 to nmax do for m from 0 to mmax do LGx[2*m, n] := LGx[2*m-2, n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LGx[2*m, n-1]/(2*n-1) od: od: for n from 2 to nmax do s(n) := 0; for m from 0 to mmax-1 do s(n) := s(n) + LGx[2*m, n] od: od: seq(s(n), n=2..nmax);
    # End program 1
    nmax1:=5; ncol:=3; Digits:=20: mmax1:=nmax1: for n from 0 to nmax1 do cfn2(n, 0):=1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for m from 1 to mmax1 do LG1[ -2*m, 1] := (((2^(2*m-1)-1)*bernoulli(2*m)/m)) od: LG1[0, 1] := evalf(gamma): for m from 2 to mmax1 do LG1[2*m-2, 1] := evalf(2*(1-2^(-2*m+1))*Zeta(2*m-1)) od: for m from -mmax1+ncol-1 to mmax1-1 do LG1[2*m, ncol] := sum((-1)^(k1+1)*cfn2(ncol-1, k1-1)* LG1[2*m-(2*ncol-2*k1), 1], k1=1..ncol)/(doublefactorial(2*ncol-3)*doublefactorial(2*ncol-1)) od;
    # End program 2
    # Maple programs edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = numer(cs(n)) and denom(cs(n)) = A162449(n).
with cs(n) = sum(LG1[2*m,n], m = 0 .. infinity) for n >= 2.
GFL(z;n) = sum( LG1[2*m,n]*z^(2*m-2),m=1..infinity)
GFL(z;n) = (LG1[ -2,n-1])/((2*n-3)*(2*n-1))+(z^2/((2*n-3)*(2*n-1))-(2*n-3)/(2*n-1))*GFL(z;n-1) with GFL(z;n=1) = -2*Psi(1-z)+Psi(1-(z/2))-(Pi/2)*tan(Pi*z/2)
LG1[ -2,n] = (-1)^(n+1)*4*(A061549(n-1)/A001790(n-1))*(A002197(n-1)/A002198(n-1))
LG1[2*m,n] = (4^(n-1)/((2*n-1)*binomial(2*n-2,n-1)))*LS1[2*m,n]

A002197 Numerators of coefficients for numerical integration.

Original entry on oeis.org

1, 17, 367, 27859, 1295803, 5329242827, 25198857127, 11959712166949, 11153239773419941, 31326450596954510807, 3737565567167418110609, 2102602044094540855003573, 189861334343507894443216783
Offset: 0

Views

Author

Keywords

Comments

The numerators of these coefficients for numerical integration are a combination of the Bernoulli numbers B{2k}, the central factorial numbers A008956(n, k) and the factor 4^n*(2*n+1)!. - Johannes W. Meijer, Jan 27 2009

Examples

			a(2) = numer(((1-2^1)*(-1)*((1/6)/2)*(9) + (1-2^3)*(1)*((-1/30)/4)*(10) + (1-2^5)*(-1)*((1/42)/6)*(1))/(2*4^2*5!)) so a(2) = 367. - _Johannes W. Meijer_, Jan 27 2009
		

References

  • H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag., 36 (1945), 216-218.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002198.
See A000367, A006954, A008956 and A002671 for underlying sequences.
Factor of the LS1[-2,n] matrix coefficients in A160487.

Programs

  • Maple
    nmax:=13: for n from 0 to nmax do A008956(n, 0) := 1: A008956(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do A008956(n, k) := (2*n-1)^2*A008956(n-1, k-1) + A008956(n-1, k) od: od: for n from 0 to nmax do Delta(n) := sum((1-2^(2*k1-1)) * (-1)^(k1) * (bernoulli(2*k1)/(2*k1)) * A008956(n, n+1-k1), k1=1..n+1) / (2*4^(n)*(2*n+1)!) end do: a:=n-> numer(Delta(n)): seq(a(n), n=0..nmax-1); # Johannes W. Meijer, Jan 27 2009, revised Sep 21 2012
  • Mathematica
    CoefficientList[Series[1/x - 1/Sqrt[x]/ArcSin[Sqrt[x]], {x, 0, 12}], x] // Numerator (* Jean-François Alcover, Jul 05 2011, after Vladeta Jovovic *)
  • Maxima
    a(n):=(sum(binomial(2*n+k-1,2*n-2)*sum((binomial(k+1,j)*sum((2*i-j)^(2*n+j)*binomial(j,i)*(-1)^(n-i),i,0,j/2))/(2^(j-1)*(2*n+j)!),j,1,k+1),k,0,2*n-1))/(2*n-1);
    makelist(num(a(n)),n,0,10); /* Vladimir Kruchinin, May 16 2013 */

Formula

Numerators of coefficients in expansion of 1/x-1/sqrt(x)/arcsin(sqrt(x)). - Vladeta Jovovic, Aug 11 2002
a(n) = numerator [sum((1-2^(2*k-1)) * (-1)^(k) * (B{2k}/(2*k)) * A008956(n, n+1-k), k=1..n+1) / (2*4^(n)*(2*n+1)!)] for n >= 0. - Johannes W. Meijer, Jan 27 2009
a(n) = numerator((sum(k=0..2*n-1, binomial(2*n+k-1,2*n-2)*sum(j=1..k+1, (binomial(k+1,j)*sum(i=0..j/2,(2*i-j)^(2*n+j)*binomial(j,i)*(-1)^(n-i)))/(2^(j-1)*(2*n+j)!))))/(2*n-1)). - Vladimir Kruchinin, May 16 2013

Extensions

More terms from Vladeta Jovovic, Aug 11 2002
Edited by Johannes W. Meijer, Sep 21 2012

A006685 Coefficients for numerical integration.

Original entry on oeis.org

24, 1920, 193536, 66355200, 13624934400, 243465191424000, 4944216195072000, 9990141980442624000, 39391717484295880704000, 465236915972420822630400000
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A002198(n) / (2*n+1). - Sean A. Irvine, Jun 17 2017
Showing 1-5 of 5 results.