A001824
Central factorial numbers: 1st subdiagonal of A008956.
Original entry on oeis.org
1, 10, 259, 12916, 1057221, 128816766, 21878089479, 4940831601000, 1432009163039625, 518142759828635250, 228929627246078500875, 121292816354463333793500, 75908014254880833434338125, 55399444912646408707007883750, 46636497509226736668824289999375
Offset: 0
(arcsin x)^3 = x^3 + 1/2*x^5 + 37/120*x^7 + 3229/15120*x^9 + ...
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 223, Problem 2.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Right-hand column 2 in triangle
A008956.
-
a[n_] = (2n+1)!!^2 (Pi^2 - 2 PolyGamma[1, n+3/2])/8; a /@ Range[0, 12] // Simplify (* Jean-François Alcover, Apr 22 2011, after Joe Keane *)
With[{nn=30},Take[(CoefficientList[Series[ArcSin[x]^3,{x,0,nn}], x] Range[0,nn-1]!)/6,{4,-1,2}]] (* Harvey P. Dale, Feb 05 2012 *)
More terms from Joe Keane (jgk(AT)jgk.org)
A001825
Central factorial numbers: 2nd subdiagonal of A008956.
Original entry on oeis.org
1, 35, 1974, 172810, 21967231, 3841278805, 886165820604, 261042753755556, 95668443268795341, 42707926241367380631, 22821422608929422854674, 14384681946935352617964750, 10562341153570752891930640875
Offset: 0
(arcsin x)^5 = x^5 + 5/6*x^7 + 47/72*x^9 + 1571/3024*x^11 + ...
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Right-hand column 3 in triangle
A008956.
-
Table[(2*n+5)!/5! * SeriesCoefficient[ArcSin[x]^5,{x,0,2*n+5}], {n,0,20}] (* Vaclav Kotesovec, Feb 23 2015 *)
More terms from Joe Keane (jgk(AT)jgk.org)
A001823
Central factorial numbers: column 2 in triangle A008956.
Original entry on oeis.org
0, 9, 259, 1974, 8778, 28743, 77077, 179452, 375972, 725781, 1312311, 2249170, 3686670, 5818995, 8892009, 13211704, 19153288, 27170913, 37808043, 51708462, 69627922, 92446431, 121181181, 157000116, 201236140, 255401965, 321205599, 400566474, 495632214
Offset: 1
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
-
A001823:=-(9+196*z+350*z**2+84*z**3+z**4)/(z-1)**7; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
-
Table[1/90*n*(n - 1)*(2*n + 1)*(2*n - 1)*(2*n - 3)*(10*n + 7), {n, 40}] (* Stefan Steinerberger, Apr 15 2006 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1}, {0,9,259,1974,8778,28743,77077},30] (* Harvey P. Dale, Jun 09 2013 *)
A001818
Squares of double factorials: (1*3*5*...*(2n-1))^2 = ((2*n-1)!!)^2.
Original entry on oeis.org
1, 1, 9, 225, 11025, 893025, 108056025, 18261468225, 4108830350625, 1187451971330625, 428670161650355625, 189043541287806830625, 100004033341249813400625, 62502520838281133375390625, 45564337691106946230659765625, 38319607998220941779984862890625
Offset: 0
Multinomial representation for a(2): partitions of 2*2=4 with even parts only: (4) with position k=1, (2^2) with k=3; M2(4,1)= 6 and M2(4,3)= 3, adding up to a(2)=9.
G.f. = 1 + x + 9*x^2 + 225*x^3 + 11025*x^4 + 893025*x^5 + 108056025*x^6 + ...
- John Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.34(c).
- T. D. Noe, Table of n, a(n) for n = 0..50
- Ron M. Adin, Pál Hegedűs, and Yuval Roichman, Descent set distribution for permutations with cycles of only odd or only even lengths, arXiv:2502.03507 [math.CO], 2025. See p. 2.
- David Callan and Emeric Deutsch, The Run Transform, arXiv preprint arXiv:1112.3639 [math.CO], 2011.
- William Y. C. Chen and Elena L. Wang, r-Enriched Permutations and an Inequality of Bóna-McLennan-White, arXiv:2502.04136 [math.CO], 2025. See p. 4.
- Harry Crane and Peter McCullagh, Reversible Markov structures on divisible set partitions, Journal of Applied Probability, Vol. 52, No. 3 (2015), pp. 622-635.
- Muhammad Adam Dombrowski and Gregory Dresden, Areas Between Cosines, arXiv:2404.17694 [math.CO], 2024. See p. 11.
- John Engbers, David Galvin, and Clifford Smyth, Restricted Stirling and Lah numbers and their inverses, arXiv:1610.05803 [math.CO], 2016. See p. 6.
- IBM, "Ponder This" puzzle for June 2009. [From _Vladeta Jovovic_, Jul 26 2009]
- John Riordan and N. J. A. Sloane, Correspondence, 1974.
- Terence Tao, A differentiation identity.
- Han Wang and Zhi-Wei Sun, Proof of a conjecture involving derangements and roots of unity, arXiv:2206.02589 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Struve function.
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
- Index to divisibility sequences.
Right-hand column 1 in triangle
A008956.
-
DoubleFactorial:=func< n | &*[n..2 by -2] >; [DoubleFactorial((2*n-1))^2: n in [0..20] ]; // Vincenzo Librandi, Jul 21 2017
-
a := proc(m) local k; 4^m*mul((-1)^k*(k-m-1/2),k=1..2*m) end; # Peter Luschny, Jun 01 2009
-
FoldList[Times,1,Range[1,25,2]]^2 (* or *) Join[{1},(Range[1,29,2]!!)^2] (* Harvey P. Dale, Jun 06 2011, Apr 10 2012 *)
Table[((2 n - 1)!!)^2, {n, 0, 30}] (* Vincenzo Librandi, Jul 21 2017 *)
-
a(n)=((2*n)!/(n!*2^n))^2
-
{a(n) = if( n<0, 1 / a(-n), sqr((2*n)! / (n! * 2^n)))}; /* Michael Somos, Jan 06 2017 */
A002452
a(n) = (9^n - 1)/8.
Original entry on oeis.org
0, 1, 10, 91, 820, 7381, 66430, 597871, 5380840, 48427561, 435848050, 3922632451, 35303692060, 317733228541, 2859599056870, 25736391511831, 231627523606480, 2084647712458321, 18761829412124890, 168856464709124011, 1519708182382116100, 13677373641439044901, 123096362772951404110
Offset: 0
a(4) = (9^4 - 1)/8 = 820 = 1111_9 = (1/2) * 40 * 41 is the ((3^4 - 1)/2)-th = 40th triangular number. - _Bernard Schott_, Apr 23 2017
- A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 36.
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Kival Ngaokrajang, Illustration of initial terms
- Vladimir Pletser, Congruence conditions on the number of terms in sums of consecutive squared integers equal to squared integers, arXiv:1409.7969 [math.NT], 2014.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- A. G. Shannon, Letter to N. J. A. Sloane, Dec 06 1974.
- M. Ward, Note on divisibility sequences, Bull. Amer. Math. Soc., 42 (1936), 843-845.
- Eric Weisstein's World of Mathematics, Repunit.
- Index entries for linear recurrences with constant coefficients, signature (10,-9).
Right-hand column 1 in triangle
A008958.
-
[(9^n - 1)/8 : n in [0..25]]; // Vincenzo Librandi, Jun 01 2011
-
A002452 := 1/(9*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation
-
(9^# & /@ Range[0, 18] // Accumulate) (* Ant King, Jan 06 2011 *)
LinearRecurrence[{10,-9},{0,1},30] (* Harvey P. Dale, Sep 23 2018 *)
-
A002452(n):=floor((9^n-1)/8)$
makelist(A002452(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=9^n>>3 \\ Charles R Greathouse IV, Jul 25 2011
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004
A000447
a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.
Original entry on oeis.org
0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
Offset: 0
G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
- G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
- F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
- Valentin Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, Vol. 275 (2004), pp. 17-41. - _Valentin Bakoev_, Mar 03 2009
- F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955 [Annotated scans of just pages 742-743]
- Milan Janjic, Two Enumerative Functions.
- T. P. Martin, Shells of atoms, Phys. Reports, Vol. 273 (1996), pp. 199-241, eq. (11).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Haüy Construction.
- Eric Weisstein's World of Mathematics, Square Pyramid.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of
A002577. -
Valentin Bakoev, Mar 03 2009
-
a000447 n = a000447_list !! n
a000447_list = scanl1 (+) a016754_list
-- Reinhard Zumkeller, Apr 02 2012
-
[n*(4*n^2-1)/3: n in [0..50]]; // Vincenzo Librandi, Jan 12 2016
-
A000447:=z*(1+6*z+z**2)/(z-1)**4; # Simon Plouffe, 1992 dissertation.
A000447:=n->n*(4*n^2 - 1)/3; seq(A000447(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n (4 n^2 - 1)/3, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 10, 35}, 80] (* Harvey P. Dale, May 25 2012 *)
Join[{0}, Accumulate[Range[1, 81, 2]^2]] (* Harvey P. Dale, Jul 18 2013 *)
CoefficientList[Series[x (1 + 6 x + x^2)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
A000447(n):=n*(4*n^2 - 1)/3$ makelist(A000447(n),n,0,20); /* Martin Ettl, Jan 07 2013 */
-
{a(n) = n * (4*n^2 - 1) / 3};
-
concat(0, Vec(x*(1+6*x+x^2)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 11 2016
-
def A000447(n): return n*((n**2<<2)-1)//3 # Chai Wah Wu, Feb 12 2023
Chrystal and Durell references from
R. K. Guy, Apr 02 2004
A008955
Triangle of central factorial numbers |t(2n,2n-2k)| read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 4, 1, 14, 49, 36, 1, 30, 273, 820, 576, 1, 55, 1023, 7645, 21076, 14400, 1, 91, 3003, 44473, 296296, 773136, 518400, 1, 140, 7462, 191620, 2475473, 15291640, 38402064, 25401600, 1, 204, 16422, 669188, 14739153, 173721912, 1017067024, 2483133696, 1625702400
Offset: 0
Triangle begins:
1;
1, 1;
1, 5, 4;
1, 14, 49, 36;
1, 30, 273, 820, 576;
...
- B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- Alois P. Heinz, Rows n = 0..100, flattened (first 51 rows from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- R. H. Boels, Three particle superstring amplitudes with massive legs, arXiv preprint arXiv:1201.2655 [hep-th], 2012.
- R. H. Boels and T. Hansen, String theory in target space, arXiv preprint arXiv:1402.6356 [hep-th], 2014.
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989).
- M. W. Coffey and M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- T. L. Curtright and T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arxiv:1408.0767 [math-ph], 2014.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- Toshiki Matsusaka, Applications of Faà di Bruno's formula to partition traces, arXiv:2507.00404 [math.NT], 2025. See p. 5.
- J. W. Meijer and N. H. G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
- S. Shadrin, L. Spitz, and D. Zvonkine, On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc., II. Ser. 86, No. 2, 407-432 (2012), Corollary 7.5.
Appears in
A160464 (Eta triangle),
A160474 (Zeta triangle),
A160479 (ZL(n)),
A161739 (RSEG2 triangle),
A161742,
A161743,
A002195,
A002196,
A162440 (EG1 matrix),
A162446 (ZG1 matrix) and
A163927. -
Johannes W. Meijer, Jun 18 2009, Jul 06 2009 and Aug 17 2009
-
T:= function(n,k)
if k=0 then return 1;
elif k=n then return (Factorial(n))^2;
else return n^2*T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..8], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 14 2019
-
a008955 n k = a008955_tabl !! n !! k
a008955_row n = a008955_tabl !! n
a008955_tabl = [1] : f [1] 1 1 where
f xs u t = ys : f ys v (t * v) where
ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
v = u + 1
-- Reinhard Zumkeller, Dec 24 2013
-
T:= func< n,k | Factorial(2*(n+1))*(&+[(-1)^j*Binomial(n,k-j)*(&+[2^(m-2*k)*StirlingFirst(2*(n-k+1)+m, 2*(n-k+1))*Binomial(2*(n-k+1)+2*j-1, 2*(n-k+1)+m-1)/Factorial(2*(n-k+1)+m): m in [0..2*j]]): j in [0..k]]) >;
[T(n,k): k in [0..n], n in [0..8]]; // G. C. Greubel, Sep 14 2019
-
nmax:=7: for n from 0 to nmax do t1(n, 0):=1: t1(n, n):=(n!)^2 end do: for n from 1 to nmax do for k from 1 to n-1 do t1(n, k) := t1(n-1, k-1)*n^2 + t1(n-1, k) end do: end do: seq(seq(t1(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
t1 := proc(n,k)
sum((-1)^j*stirling1(n+1,n+1-k+j)*stirling1(n+1,n+1-k-j),j=-k..k) ;
end proc: # Mircea Merca, Apr 02 2012
# third Maple program:
T:= proc(n, k) option remember; `if`(k=0, 1,
add(T(j-1, k-1)*j^2, j=1..n))
end:
seq(seq(T(n, k), k=0..n), n=0..8); # Alois P. Heinz, Feb 19 2022
-
t[n_, 0]=1; t[n_, n_]=(n!)^2; t[n_ , k_ ]:=t[n, k] = n^2*t[n-1, k-1] + t[n-1, k]; Flatten[Table[t[n, k], {n,0,8}, {k,0,n}] ][[1 ;; 42]]
(* Jean-François Alcover, May 30 2011, after recurrence formula *)
-
T(n,m):=(2*(n+1))!*sum((-1)^k*binomial(n,m-k)*sum((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1,2*(n-m+1)+i-1))/(2*(n-m+1)+i)!,i,0,2*k),k,0,m); /* Vladimir Kruchinin, Oct 05 2013 */
-
T(n,k)=if(k==0,1, if(k==n, (n!)^2, n^2*T(n-1, k-1) + T(n-1, k)));
for(n=0,8, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 14 2019
-
# This triangle is (0,0)-based.
def A008955(n, k) :
if k==0 : return 1
if k==n : return factorial(n)^2
return n^2*A008955(n-1, k-1) + A008955(n-1, k)
for n in (0..7) : print([A008955(n, k) for k in (0..n)]) # Peter Luschny, Feb 04 2012
There's an error in the last column of Riordan's table (change 46076 to 21076).
Discussion of Riordan's definition of central factorial numbers added by
N. J. A. Sloane, Feb 01 2011
A036969
Triangle read by rows: T(n,k) = T(n-1,k-1) + k^2*T(n-1,k), 1 < k <= n, T(n,1) = 1.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 14, 1, 1, 85, 147, 30, 1, 1, 341, 1408, 627, 55, 1, 1, 1365, 13013, 11440, 2002, 91, 1, 1, 5461, 118482, 196053, 61490, 5278, 140, 1, 1, 21845, 1071799, 3255330, 1733303, 251498, 12138, 204, 1, 1, 87381, 9668036, 53157079, 46587905
Offset: 1
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 21, 14, 1;
1, 85, 147, 30, 1;
1, 341, 1408, 627, 55, 1;
1, 1365, 13013, 11440, 2002, 91, 1;
1, 5461, 118482, 196053, 61490, 5278, 140, 1;
...
T(3,2) = 5: The five set partitions into two sets are {1,1',2,2'}{3,3'}, {1,1',3,3'}{2,2'}, {1,1'}{2,2',3,3'}, {1,1',3}{2,2',3'} and {1,1',3'}{2,2',3}.
- L. Carlitz, A conjecture concerning Genocchi numbers. Norske Vid. Selsk. Skr. (Trondheim) 1971, no. 9, 4 pp. [The triangle appears on page 2.]
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.
- Vincenzo Librandi, Rows n = 1..100 of triangle, flattened
- Thomas Browning, Counting Parabolic Double Cosets in Symmetric Groups, arXiv:2010.13256 [math.CO], 2020.
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt. Central factorial numbers; their main properties and some applications, Num. Funct. Anal. Optim., 10 (1989) 419-488.
- José L. Cereceda, Sums of powers of integers and the sequence A304330, arXiv:2405.05268 [math.GM], 2024. See p. 2.
- M. W. Coffey and M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
- Qi Fang, Ya-Nan Feng, and Shi-Mei Ma, Alternating runs of permutations and the central factorial numbers, arXiv:2202.13978 [math.CO], 2022.
- F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265. - From _N. J. A. Sloane_, Jan 02 2013
- Petro Kolosov, Polynomial identities involving central factorial numbers, GitHub, 2024. See p. 6.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- S. Matsumoto and J. Novak, Jucys-Murphy Elements and Unitary Matrix Integrals arXiv.0905.1992 [math.CO], 2009-2012.
- B. K. Miceli, Two q-Analogues of Poly-Stirling Numbers, J. Integer Seq., 14 (2011), 11.9.6.
- John Riordan, Letter, Apr 28 1976.
- John Riordan, Letter, Jul 06 1978
- Richard P. Stanley, Hook Lengths and Contents.
-
a036969 n k = a036969_tabl !! (n-1) (k-1)
a036969_row n = a036969_tabl !! (n-1)
a036969_tabl = iterate f [1] where
f row = zipWith (+)
([0] ++ row) (zipWith (*) (tail a000290_list) (row ++ [0]))
-- Reinhard Zumkeller, Feb 18 2013
-
A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end;
-
t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!), {j, 1, k}]; Flatten[ Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Oct 11 2011 *)
t1[n_, k_] := (1/(2 k)!) * Sum[Binomial[2 k, j]*(-1)^j*(k - j)^(2 n), {j, 0, 2 k}]; Column[Table[t1[n, k], {n, 1, 10}, {k, 1, n}]] (* Kolosov Petro ,Jul 26 2023 *)
-
T(n,k)=if(1M. F. Hasler, Feb 03 2012
-
T(n,k)=2*sum(j=1,k,(-1)^(k-j)*j^(2*n)/(k-j)!/(k+j)!) \\ M. F. Hasler, Feb 03 2012
-
def A036969(n,k) : return (2/factorial(2*k))*add((-1)^j*binomial(2*k,j)*(k-j)^(2*n) for j in (0..k))
for n in (1..7) : print([A036969(n,k) for k in (1..n)]) # Peter Luschny, Feb 03 2012
A160487
The Lambda triangle.
Original entry on oeis.org
1, -107, 10, 59845, -7497, 210, -6059823, 854396, -35574, 420, 5508149745, -827924889, 41094790, -765534, 4620, -8781562891079, 1373931797082, -75405128227, 1738417252, -17219202, 60060
Offset: 2
The first few rows of the triangle LAMBDA(n,m) with n=2,3,.. and m=1,2,.. are
[1]
[ -107, 10]
[59845, -7497, 210]
[ -6059823, 854396, -35574, 420]
The first few LAMBDA(z;n) polynomials are
LAMBDA (z;n=2) = 1
LAMBDA (z;n=3) = -107 +10*z^2
LAMBDA (z;n=4) = 59845-7497*z^2+210*z^4
The first few CFN2(z;n) polynomials are
CFN2(z;n=2) = (z^2-1)
CFN2(z;n=3) = (z^4-10*z^2+9)
CFN2(z;n=4) = (z^6- 35*z^4+259*z^2-225)
The first few generating functions GL(z;n) are:
GL(z;n=2) = (6*(z^2-1)*GL(z,n=1) + (1)) /12
GL(z;n=3) = (60*(z^4-10*z^2+9)*GL(z,n=1)+ (-107+10*z^2)) / 1440
GL(z;n=4) = (1260*( z^6- 35*z^4+259*z^2-225)*GL(z,n=1) + (59845-7497*z^2+ 210*z^4))/907200
- Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- Johannes W. Meijer, The zeros of the Eta, Zeta, Beta and Lambda polynomials, jpg and pdf, Mar 03 2013.
A160488 equals the first left hand column.
A160476 equals the first right hand column and 6*h(n).
A001620 is the Euler-Mascheroni constant gamma.
The CFN2(z, n) and the cfn2(n, k) lead to
A008956.
-
nmax:=7; for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1, n), k1=1..n) / (2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1) / (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n)/ factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: for n from 2 to nmax do LAMBDA(n, 1) := p(n)*f(n) end do: mmax:=nmax: for n from 2 to nmax do LAMBDA(n, n) := 0 end do: for n from 1 to nmax do b(n) := (2*n)*(2*n-1)*denom(Delta(n-1))/ (2^(2*n)*(2*n-1)) end do: c(1) := b(1): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(2*n+2)* (2*n+1), b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)/(6*(2*n)!) end do: for n from 1 to nmax-1 do ZL(n+2) := cm(n+1)/cm(n) end do: for m from 2 to mmax do for n from m+1 to nmax do LAMBDA(n, m) := ZL(n)*(LAMBDA(n-1, m-1)-(2*n-3)^2*LAMBDA(n-1, m)) end do end do; seq(seq(LAMBDA(n,m), m=1..n-1), n=2..nmax);
# End first program.
nmax1:=10; m:=1; LS1row:=-2*m; for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: mmax1:=nmax1: for m1 from 1 to mmax1 do LS1[-2*m1, 1] := 2*(1-2^(-(-2*m1+1)))*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do LS1[ -2*m1, n] := sum((-1)^(k1+1)*cfn2(n-1,k1-1)* LS1[2*k1-2*n-2*m1, 1], k1=1..n)/(2*n-2)! od: od: seq(LS1[ -2*m, n], n=1..nmax1-m+1);
# End second program.
A160480
The Beta triangle read by rows.
Original entry on oeis.org
-1, -11, 1, -299, 36, -1, -15371, 2063, -85, 1, -1285371, 182474, -8948, 166, -1, -159158691, 23364725, -1265182, 29034, -287, 1, -27376820379, 4107797216, -237180483, 6171928, -77537, 456, -1
Offset: 2
The first few rows of the triangle BETA(n,m) with n=2,3,... and m=1,2,... are
[ -1],
[ -11, 1],
[ -299, 36, -1],
[ -15371, 2063 -85, 1].
The first few BETA(z;n) polynomials are
BETA(z;n=2) = -1,
BETA(z;n=3) = -11 + z^2,
BETA(z;n=4) = -299 + 36*z^2 - z^4.
The first few CFN1(z;n) polynomials are
CFN2(z;n=2) = (z^2 - 1),
CFN2(z;n=3) = (z^4 - 10*z^2 + 9),
CFN2(z;n=4) = (z^6 - 35*z^4 + 259*z^2 - 225).
The first few generating functions GK(z;n) are
GK(z;n=2) = ((-1)*(z^2-1)*GK(z,n=1) + (-1))/2,
GK(z;n=3) = ((z^4 - 10*z^2 + 9)*GK(z,n=1)+ (-11 + z^2))/24,
GK(z;n=4) = ((-1)*(z^6 - 35*z^4 + 259*z^2 - 225)*GK(z,n=1) + (-299 + 36*z^2 - z^4))/720.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- J. M. Amigo, Relations among Sums of Reciprocal Powers Part II, International Journal of Mathematics and Mathematical Sciences , Volume 2008 (2008), pp. 1-20.
- Johannes W. Meijer, The zeros of the Eta, Zeta, Beta and Lambda polynomials, jpg and pdf, Mar 03 2013.
The CFN2(z, n) and the cfn2(n, k) lead to
A008956.
-
nmax := 8; mmax := nmax: for n from 1 to nmax do BETA(n, n) := 0 end do: m := 1: for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - (2*n-4)! od: for m from 2 to mmax do for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - BETA(n-1, m-1) od: od: seq(seq(BETA(n, m), m=1..n-1), n= 2..nmax);
# End first program
nmax1 := 25; m := 1; BS1row := 1-2*m; for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: mmax1 := nmax1: for m1 from 1 to mmax1 do BS1[1-2*m1, 1] := euler(2*m1-2) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do BS1[1-2*m1, n] := (-1)^(n+1)*sum((-1)^(k1+1)*cfn2(n-1, k1-1) * BS1[2*k1-2*n-2*m1+1, 1], k1 =1..n)/(2*n-2)! od: od: seq(BS1[1-2*m, n], n=1..nmax1-m+1);
# End second program
-
BETA[2, 1] = -1;
BETA[n_, 1] := BETA[n, 1] = (2*n - 3)^2*BETA[n - 1, 1] - (2*n - 4)!;
BETA[n_ /; n > 2, m_ /; m > 0] /; 1 <= m <= n := BETA[n, m] = (2*n - 3)^2*BETA[n - 1, m] - BETA[n - 1, m - 1];
BETA[, ] = 0;
Table[BETA[n, m], {n, 2, 9}, {m, 1, n - 1}] // Flatten (* Jean-François Alcover, Dec 13 2017 *)
Showing 1-10 of 25 results.
Comments