A378628 SHA-256 hash of binary strings ordered by length then lexicographically, interpreting the bits of the resulting hash as a number in binary.
102987336249554097029535212322581322789799900648198034993379397001115665086549, 85627803894273957621009139791088467240572419248799306945317937552975942820725, 84071438648566403273885734069370854758478523414599514048347910236850479717025, 91949452561369181223012808967964775320445203057864513807052896586217122700773
Offset: 1
Keywords
Examples
For n = 1, there are no bits after the most significant 1 bit, so a(1) is the SHA-256 hash of the empty string. For n = 6 = 110_2, the bits after the most significant 1 are 10, so a(5) is the SHA-256 hash of the bits 10.
Links
- David Rabahy, Table of n, a(n) for n = 1..1000
- David Rabahy, Python program
- NIST, Secure Hash Standard (SHS), FIPS PUB 180-4.
- Wikipedia, SHA-2
Programs
-
Python
# See links
-
Python
from sha256bit import Sha256bit def a(n): s = bin(n)[3:] t = bytearray(int(s[i*8:i*8+8].ljust(8, "0"), 2) for i in range((len(s)+7)//8)) if n > 1 else "" return int(Sha256bit(t, bitlen=len(s)).hexdigest(), 16) print([a(n) for n in range(1, 5)]) # Michael S. Branicky, Dec 08 2024
Comments