A008956
Triangle of central factorial numbers |4^k t(2n+1,2n+1-2k)| read by rows (n>=0, k=0..n).
Original entry on oeis.org
1, 1, 1, 1, 10, 9, 1, 35, 259, 225, 1, 84, 1974, 12916, 11025, 1, 165, 8778, 172810, 1057221, 893025, 1, 286, 28743, 1234948, 21967231, 128816766, 108056025, 1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225, 1, 680
Offset: 0
Triangle begins:
[1]
[1, 1]
[1, 10, 9]
[1, 35, 259, 225]
[1, 84, 1974, 12916, 11025]
[1, 165, 8778, 172810, 1057221, 893025]
[1, 286, 28743, 1234948, 21967231, 128816766, 108056025]
[1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225]
...
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989). [From Johannes W. Meijer, Jun 18 2009]
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812. [From _Johannes W. Meijer_, Jun 18 2009]
- R. H. Boels, T. Hansen, String theory in target space, arXiv preprint arXiv:1402.6356 [hep-th], 2014.
- T. L. Curtright, D. B. Fairlie, C. K. Zachos, A compact formula for rotations as spin matrix polynomials, arXiv preprint arXiv:1402.3541 [math-ph], 2014.
- T. L. Curtright, T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arXiv:1408.0767 [math-ph], 2014.
- M. Eastwood and H. Goldschmidt, Zero-energy fields on complex projective space, arXiv preprint arXiv:1108.1602 [math.DG], 2011.
- M. Eastwood, The X-ray transform on projective space. - From _N. J. A. Sloane_, Oct 22 2012
-
a008956 n k = a008956_tabl !! n !! k
a008956_row n = a008956_tabl !! n
a008956_tabl = [1] : f [1] 1 1 where
f xs u t = ys : f ys v (t * v) where
ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
v = u + 2
-- Reinhard Zumkeller, Dec 24 2013
-
f:=n->mul(x+(2*i+1)^2,i=0..n-1);
for n from 0 to 12 do
t1:=eval(f(n)); t1d:=degree(t1);
t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
lprint(t2);
od: # N. J. A. Sloane, Feb 01 2011
A008956 := proc(n,k) local i ; mul( x+2*i-2*n-1,i=1..2*n) ; expand(%) ; coeftayl(%,x=0,2*(n-k)) ; abs(%) ; end: for n from 0 to 10 do for k from 0 to n do printf("%a,",A008956(n,k)) ; od: od: # R. J. Mathar, May 29 2009
nmax:=7: for n from 0 to nmax do t2(n, 0):=1: t2(n, n):=(doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do t2(n, k) := (2*n-1)^2*t2(n-1, k-1)+t2(n-1, k) od: od: seq(seq(t2(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
-
t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n-1)!!)^2; t[n_, k_] := t[n, k] = (2*n-1)^2*t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Johannes W. Meijer *)
-
{T(n, k) = if( n<=0, k==0, (-1)^k * polcoeff( numerator( 2^(2*n -1) / sum(j=0, 2*n - 1, binomial( 2*n - 1, j) / (x + 2*n - 1 - 2*j))), 2*n - 2*k))}; /* Michael Somos, Feb 24 2003 */
A001824
Central factorial numbers: 1st subdiagonal of A008956.
Original entry on oeis.org
1, 10, 259, 12916, 1057221, 128816766, 21878089479, 4940831601000, 1432009163039625, 518142759828635250, 228929627246078500875, 121292816354463333793500, 75908014254880833434338125, 55399444912646408707007883750, 46636497509226736668824289999375
Offset: 0
(arcsin x)^3 = x^3 + 1/2*x^5 + 37/120*x^7 + 3229/15120*x^9 + ...
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 223, Problem 2.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Right-hand column 2 in triangle
A008956.
-
a[n_] = (2n+1)!!^2 (Pi^2 - 2 PolyGamma[1, n+3/2])/8; a /@ Range[0, 12] // Simplify (* Jean-François Alcover, Apr 22 2011, after Joe Keane *)
With[{nn=30},Take[(CoefficientList[Series[ArcSin[x]^3,{x,0,nn}], x] Range[0,nn-1]!)/6,{4,-1,2}]] (* Harvey P. Dale, Feb 05 2012 *)
More terms from Joe Keane (jgk(AT)jgk.org)
A002455
Central factorial numbers: unsigned 1st subdiagonal of A182867.
Original entry on oeis.org
0, 1, 20, 784, 52480, 5395456, 791691264, 157294854144, 40683662475264, 13288048674471936, 5349739088314368000, 2603081566154391552000, 1506057980251484454912000, 1021944601582419125993472000
Offset: 0
(arcsin x)^4 = x^4 + 2/3*x^6 + 7/15*x^8 + 328/945*x^10 + ...
- B. Berndt, Ramanujan's Notebooks, Part I, page 263.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 110.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
List([0..20], n-> 4^(n-1)*(Factorial(n))^2*Sum([1..n], k-> 1/k^2)); # G. C. Greubel, Jul 04 2019
-
[0] cat [4^(n-1)*(Factorial(n))^2*(&+[1/k^2: k in [1..n]]): n in [1..20]]; // G. C. Greubel, Jul 04 2019
-
A002455 := proc(n)
arcsin(x)^4;
coeftayl(%,x=0,2*n+2)*(2*n+2)!/4! ;
end proc:
seq(A002455(n),n=0..20) ; # R. J. Mathar, Jan 20 2025
-
nmax = 13; coes = CoefficientList[ Series[ ArcSin[x]^4, {x, 0, 2*nmax + 2}], x]* Range[0, 2*nmax + 2]!/24; a[n_] := coes[[2*n + 3]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Dec 08 2011 *)
Table[4^(n-1)*(n!)^2*HarmonicNumber[n,2], {n,0,20}] (* G. C. Greubel, Jul 04 2019 *)
-
a(n)=if(n<0,0,(2*n+2)!*polcoeff(asin(x+O(x^(2*n+3)))^4/4!,2*n+2))
-
a(n)=-(-1)^n*polcoeff(prod(k=0,2*n,x+2*k-2*n),3)
-
[4^(n-1)*(factorial(n))^2*sum(1/k^2 for k in (1..n)) for n in (0..20)] # G. C. Greubel, Jul 04 2019
More terms from Joe Keane (jgk(AT)jgk.org)
A049033
Central factorial numbers: unsigned 2nd subdiagonal of A182867.
Original entry on oeis.org
1, 56, 4368, 489280, 75851776, 15658639360, 4165906530304, 1390437378293760, 569462999991975936, 280969831084430721024, 164441704270786486861824, 112668650067303149573505024
Offset: 0
Joe Keane (jgk(AT)jgk.org)
(arcsin x)^6 = x^6 + x^8 + 13/15*x^10 + 139/189*x^12 + ...
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
-
A049033 := proc(n)
arcsin(x)^6;
coeftayl(%,x=0,2*n+6)*(2*n+6)!/6! ;
end proc:
seq(A049033(n),n=0..20) ; # R. J. Mathar, Jan 20 2025
A380570
Triangle T(n, k) read by rows: Row n gives the coefficients of the even powers in Product_{t=1..n}(2*x - (2*t - 1))*Product_{t=1..n}(2*x + (2*t - 1)).
Original entry on oeis.org
1, 4, -1, 16, -40, 9, 64, -560, 1036, -225, 256, -5376, 31584, -51664, 11025, 1024, -42240, 561792, -2764960, 4228884, -893025, 4096, -292864, 7358208, -79036672, 351475696, -515267064, 108056025, 16384, -1863680, 78926848, -1559683840, 14763100352, -61460460880, 87512357916
Offset: 0
Triangle begins:
n \ k: 0 1 2 3 4 5 6
x^0 x^2 x^4 x^6 x^8 x^10 x^12
[0] 1;
[1] 4, -1;
[2] 16, -40, 9;
[3] 64, -560, 1036, -225;
[4] 256, -5376, 31584, -51664, 11025;
[5] 1024, -42240, 561792, -2764960, 4228884, -893025;
[6] 4096, -292864, 7358208, -79036672, 351475696, -515267064, 108056025;
...
Cf.
A001818 (absolute values of main diagonal).
Cf.
A001824 (1/4 of absolute values of second diagonal).
Cf.
A001825 (1/16 of absolute values of second diagonal).
-
T(n, k) = Vec(prod(k=1,n,2*x-(2*k-1))*prod(k=1,n,2*x+(2*k-1)))[1+2*k]
Showing 1-5 of 5 results.
Comments