A001819
Central factorial numbers: second right-hand column of triangle A008955.
Original entry on oeis.org
0, 1, 5, 49, 820, 21076, 773136, 38402064, 2483133696, 202759531776, 20407635072000, 2482492033152000, 359072203696128000, 60912644957448192000, 11977654199703478272000, 2702572249389834608640000
Offset: 0
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Second right-hand column of triangle
A008955.
Equals row sums of
A162990(n)/(n+1)^2 for n >= 1.
-
Table[Sum[1/i^2,{i,1,n}]/Product[1/i^2,{i,1,n}],{n,1,40}] (* Alexander Adamchuk, Jul 11 2006 *)
Table[n!^2*HarmonicNumber[n, 2], {n, 0, 15}] (* Jean-François Alcover, May 09 2012, after Joe Keane *)
-
a(n)=n!^2*sum(k=1,n,1/k^2) \\ Charles R Greathouse IV, Nov 06 2016
A001824
Central factorial numbers: 1st subdiagonal of A008956.
Original entry on oeis.org
1, 10, 259, 12916, 1057221, 128816766, 21878089479, 4940831601000, 1432009163039625, 518142759828635250, 228929627246078500875, 121292816354463333793500, 75908014254880833434338125, 55399444912646408707007883750, 46636497509226736668824289999375
Offset: 0
(arcsin x)^3 = x^3 + 1/2*x^5 + 37/120*x^7 + 3229/15120*x^9 + ...
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 223, Problem 2.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Right-hand column 2 in triangle
A008956.
-
a[n_] = (2n+1)!!^2 (Pi^2 - 2 PolyGamma[1, n+3/2])/8; a /@ Range[0, 12] // Simplify (* Jean-François Alcover, Apr 22 2011, after Joe Keane *)
With[{nn=30},Take[(CoefficientList[Series[ArcSin[x]^3,{x,0,nn}], x] Range[0,nn-1]!)/6,{4,-1,2}]] (* Harvey P. Dale, Feb 05 2012 *)
More terms from Joe Keane (jgk(AT)jgk.org)
A001825
Central factorial numbers: 2nd subdiagonal of A008956.
Original entry on oeis.org
1, 35, 1974, 172810, 21967231, 3841278805, 886165820604, 261042753755556, 95668443268795341, 42707926241367380631, 22821422608929422854674, 14384681946935352617964750, 10562341153570752891930640875
Offset: 0
(arcsin x)^5 = x^5 + 5/6*x^7 + 47/72*x^9 + 1571/3024*x^11 + ...
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Right-hand column 3 in triangle
A008956.
-
Table[(2*n+5)!/5! * SeriesCoefficient[ArcSin[x]^5,{x,0,2*n+5}], {n,0,20}] (* Vaclav Kotesovec, Feb 23 2015 *)
More terms from Joe Keane (jgk(AT)jgk.org)
A049033
Central factorial numbers: unsigned 2nd subdiagonal of A182867.
Original entry on oeis.org
1, 56, 4368, 489280, 75851776, 15658639360, 4165906530304, 1390437378293760, 569462999991975936, 280969831084430721024, 164441704270786486861824, 112668650067303149573505024
Offset: 0
Joe Keane (jgk(AT)jgk.org)
(arcsin x)^6 = x^6 + x^8 + 13/15*x^10 + 139/189*x^12 + ...
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
-
A049033 := proc(n)
arcsin(x)^6;
coeftayl(%,x=0,2*n+6)*(2*n+6)!/6! ;
end proc:
seq(A049033(n),n=0..20) ; # R. J. Mathar, Jan 20 2025
A002701
Coefficients for numerical differentiation.
Original entry on oeis.org
1, 1, 7, 41, 479, 59, 266681, 63397, 514639, 178939, 10410343, 18500393, 40799043101, 1411432849, 6620481151, 48409924397, 238357395880861, 339716530787, 86364397717734821, 421950627598601, 222226462279, 15392144025383
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135.
- H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135. [Annotated scanned copy]
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 21 (see numerators of numbers named N(3,2k+1) and N(4,2k)).
A002702
Coefficients for numerical differentiation.
Original entry on oeis.org
1, 4, 120, 3024, 151200, 79200, 1513512000, 1513512000, 51459408000, 74662922880, 18068427336960, 133196739984000, 1215553449093984000, 173650492727712000, 3357242859402432000, 101013513093196704000, 2043503369875369321920000
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135.
- H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135. [Annotated scanned copy]
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 21 (see denominators of numbers named N(3,2k+1)).
Showing 1-6 of 6 results.
Comments