A001820
Central factorial numbers: 2nd subdiagonal of A008955.
Original entry on oeis.org
1, 14, 273, 7645, 296296, 15291640, 1017067024, 84865562640, 8689315795776, 1071814846360896, 156823829909121024, 26862299458337581056, 5325923338791614078976, 1210310405427816646041600, 312542036038910895995289600, 91018216923341770801874534400
Offset: 0
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Third right-hand column of triangle
A008955.
-
seq(2*Stirling1(n+3, 1)*Stirling1(n+3, 5)-2*Stirling1(n+3, 2)*Stirling1(n+3, 4)+Stirling1(n+3, 3)^2, n=0..20); # Mircea Merca, Apr 03 2012
-
Table[StirlingS1[n+3, 3]^2 - 2*StirlingS1[n+3, 2]*StirlingS1[n+3, 4] + 2*StirlingS1[n+3, 1]*StirlingS1[n+3, 5], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
A001824
Central factorial numbers: 1st subdiagonal of A008956.
Original entry on oeis.org
1, 10, 259, 12916, 1057221, 128816766, 21878089479, 4940831601000, 1432009163039625, 518142759828635250, 228929627246078500875, 121292816354463333793500, 75908014254880833434338125, 55399444912646408707007883750, 46636497509226736668824289999375
Offset: 0
(arcsin x)^3 = x^3 + 1/2*x^5 + 37/120*x^7 + 3229/15120*x^9 + ...
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 223, Problem 2.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Right-hand column 2 in triangle
A008956.
-
a[n_] = (2n+1)!!^2 (Pi^2 - 2 PolyGamma[1, n+3/2])/8; a /@ Range[0, 12] // Simplify (* Jean-François Alcover, Apr 22 2011, after Joe Keane *)
With[{nn=30},Take[(CoefficientList[Series[ArcSin[x]^3,{x,0,nn}], x] Range[0,nn-1]!)/6,{4,-1,2}]] (* Harvey P. Dale, Feb 05 2012 *)
More terms from Joe Keane (jgk(AT)jgk.org)
A002455
Central factorial numbers: unsigned 1st subdiagonal of A182867.
Original entry on oeis.org
0, 1, 20, 784, 52480, 5395456, 791691264, 157294854144, 40683662475264, 13288048674471936, 5349739088314368000, 2603081566154391552000, 1506057980251484454912000, 1021944601582419125993472000
Offset: 0
(arcsin x)^4 = x^4 + 2/3*x^6 + 7/15*x^8 + 328/945*x^10 + ...
- B. Berndt, Ramanujan's Notebooks, Part I, page 263.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 110.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
List([0..20], n-> 4^(n-1)*(Factorial(n))^2*Sum([1..n], k-> 1/k^2)); # G. C. Greubel, Jul 04 2019
-
[0] cat [4^(n-1)*(Factorial(n))^2*(&+[1/k^2: k in [1..n]]): n in [1..20]]; // G. C. Greubel, Jul 04 2019
-
A002455 := proc(n)
arcsin(x)^4;
coeftayl(%,x=0,2*n+2)*(2*n+2)!/4! ;
end proc:
seq(A002455(n),n=0..20) ; # R. J. Mathar, Jan 20 2025
-
nmax = 13; coes = CoefficientList[ Series[ ArcSin[x]^4, {x, 0, 2*nmax + 2}], x]* Range[0, 2*nmax + 2]!/24; a[n_] := coes[[2*n + 3]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Dec 08 2011 *)
Table[4^(n-1)*(n!)^2*HarmonicNumber[n,2], {n,0,20}] (* G. C. Greubel, Jul 04 2019 *)
-
a(n)=if(n<0,0,(2*n+2)!*polcoeff(asin(x+O(x^(2*n+3)))^4/4!,2*n+2))
-
a(n)=-(-1)^n*polcoeff(prod(k=0,2*n,x+2*k-2*n),3)
-
[4^(n-1)*(factorial(n))^2*sum(1/k^2 for k in (1..n)) for n in (0..20)] # G. C. Greubel, Jul 04 2019
More terms from Joe Keane (jgk(AT)jgk.org)
A001825
Central factorial numbers: 2nd subdiagonal of A008956.
Original entry on oeis.org
1, 35, 1974, 172810, 21967231, 3841278805, 886165820604, 261042753755556, 95668443268795341, 42707926241367380631, 22821422608929422854674, 14384681946935352617964750, 10562341153570752891930640875
Offset: 0
(arcsin x)^5 = x^5 + 5/6*x^7 + 47/72*x^9 + 1571/3024*x^11 + ...
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Right-hand column 3 in triangle
A008956.
-
Table[(2*n+5)!/5! * SeriesCoefficient[ArcSin[x]^5,{x,0,2*n+5}], {n,0,20}] (* Vaclav Kotesovec, Feb 23 2015 *)
More terms from Joe Keane (jgk(AT)jgk.org)
Showing 1-4 of 4 results.
Comments