Original entry on oeis.org
0, 1, 21, 147, 627, 2002, 5278, 12138, 25194, 48279, 86779, 148005, 241605, 380016, 578956, 857956, 1240932, 1756797, 2440113, 3331783, 4479783, 5939934, 7776714, 10064110, 12886510, 16339635, 20531511, 25583481, 31631257, 38826012, 47335512, 57345288, 69059848
Offset: 0
Larry Reeves (larryr(AT)acm.org), Mar 20 2001
A204579
Triangle read by rows: matrix inverse of the central factorial numbers T(2*n, 2*k) (A036969).
Original entry on oeis.org
1, -1, 1, 4, -5, 1, -36, 49, -14, 1, 576, -820, 273, -30, 1, -14400, 21076, -7645, 1023, -55, 1, 518400, -773136, 296296, -44473, 3003, -91, 1, -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1, 1625702400, -2483133696, 1017067024, -173721912, 14739153, -669188, 16422, -204, 1
Offset: 1
Triangle starts:
[1] 1;
[2] -1, 1;
[3] 4, -5, 1;
[4] -36, 49, -14, 1;
[5] 576, -820, 273, -30, 1;
[6] -14400, 21076, -7645, 1023, -55, 1;
[7] 518400, -773136, 296296, -44473, 3003, -91, 1;
[8] -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1;
-
# From Peter Luschny, Feb 29 2024: (Start)
ogf := n -> local j; z^2*mul(z^2 - j^2, j = 1..n-1):
Trow := n -> local k; seq(coeff(expand(ogf(n)), z, 2*k), k = 1..n):
# Alternative:
f := w -> (w^sqrt(t) + w^(-sqrt(t)))/2: egf := f((x/2 + sqrt(1 + (x/2)^2))^2):
ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, k), k = 1..n): # (End)
# Assuming offset 0:
rowpoly := n -> (-1)^n * pochhammer(1 - sqrt(x), n) * pochhammer(1 + sqrt(x), n):
row := n -> local k; seq(coeff(expand(rowpoly(n)), x, k), k = 0..n):
seq(print(row(n)), n = 0..7); # Peter Luschny, Aug 03 2024
-
rows = 10;
t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k - j)/((k - j)!*(k + j)!), {j, 1, k}];
T = Table[t[n, k], {n, 1, rows}, {k, 1, rows}] // Inverse;
Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018 *)
-
select(concat(Vec(matrix(10,10,n,k,T(n,k)/*from A036969*/)~^-1)), x->x)
-
def A204579(n, k): return (-1)^(n-k)*A008955(n, n-k)
for n in (0..7): print([A204579(n, k) for k in (0..n)]) # Peter Luschny, Feb 05 2012
A008955
Triangle of central factorial numbers |t(2n,2n-2k)| read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 4, 1, 14, 49, 36, 1, 30, 273, 820, 576, 1, 55, 1023, 7645, 21076, 14400, 1, 91, 3003, 44473, 296296, 773136, 518400, 1, 140, 7462, 191620, 2475473, 15291640, 38402064, 25401600, 1, 204, 16422, 669188, 14739153, 173721912, 1017067024, 2483133696, 1625702400
Offset: 0
Triangle begins:
1;
1, 1;
1, 5, 4;
1, 14, 49, 36;
1, 30, 273, 820, 576;
...
- B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- Alois P. Heinz, Rows n = 0..100, flattened (first 51 rows from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- R. H. Boels, Three particle superstring amplitudes with massive legs, arXiv preprint arXiv:1201.2655 [hep-th], 2012.
- R. H. Boels and T. Hansen, String theory in target space, arXiv preprint arXiv:1402.6356 [hep-th], 2014.
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989).
- M. W. Coffey and M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- T. L. Curtright and T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arxiv:1408.0767 [math-ph], 2014.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- Toshiki Matsusaka, Applications of Faà di Bruno's formula to partition traces, arXiv:2507.00404 [math.NT], 2025. See p. 5.
- J. W. Meijer and N. H. G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
- S. Shadrin, L. Spitz, and D. Zvonkine, On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc., II. Ser. 86, No. 2, 407-432 (2012), Corollary 7.5.
Appears in
A160464 (Eta triangle),
A160474 (Zeta triangle),
A160479 (ZL(n)),
A161739 (RSEG2 triangle),
A161742,
A161743,
A002195,
A002196,
A162440 (EG1 matrix),
A162446 (ZG1 matrix) and
A163927. -
Johannes W. Meijer, Jun 18 2009, Jul 06 2009 and Aug 17 2009
-
T:= function(n,k)
if k=0 then return 1;
elif k=n then return (Factorial(n))^2;
else return n^2*T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..8], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 14 2019
-
a008955 n k = a008955_tabl !! n !! k
a008955_row n = a008955_tabl !! n
a008955_tabl = [1] : f [1] 1 1 where
f xs u t = ys : f ys v (t * v) where
ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
v = u + 1
-- Reinhard Zumkeller, Dec 24 2013
-
T:= func< n,k | Factorial(2*(n+1))*(&+[(-1)^j*Binomial(n,k-j)*(&+[2^(m-2*k)*StirlingFirst(2*(n-k+1)+m, 2*(n-k+1))*Binomial(2*(n-k+1)+2*j-1, 2*(n-k+1)+m-1)/Factorial(2*(n-k+1)+m): m in [0..2*j]]): j in [0..k]]) >;
[T(n,k): k in [0..n], n in [0..8]]; // G. C. Greubel, Sep 14 2019
-
nmax:=7: for n from 0 to nmax do t1(n, 0):=1: t1(n, n):=(n!)^2 end do: for n from 1 to nmax do for k from 1 to n-1 do t1(n, k) := t1(n-1, k-1)*n^2 + t1(n-1, k) end do: end do: seq(seq(t1(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
t1 := proc(n,k)
sum((-1)^j*stirling1(n+1,n+1-k+j)*stirling1(n+1,n+1-k-j),j=-k..k) ;
end proc: # Mircea Merca, Apr 02 2012
# third Maple program:
T:= proc(n, k) option remember; `if`(k=0, 1,
add(T(j-1, k-1)*j^2, j=1..n))
end:
seq(seq(T(n, k), k=0..n), n=0..8); # Alois P. Heinz, Feb 19 2022
-
t[n_, 0]=1; t[n_, n_]=(n!)^2; t[n_ , k_ ]:=t[n, k] = n^2*t[n-1, k-1] + t[n-1, k]; Flatten[Table[t[n, k], {n,0,8}, {k,0,n}] ][[1 ;; 42]]
(* Jean-François Alcover, May 30 2011, after recurrence formula *)
-
T(n,m):=(2*(n+1))!*sum((-1)^k*binomial(n,m-k)*sum((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1,2*(n-m+1)+i-1))/(2*(n-m+1)+i)!,i,0,2*k),k,0,m); /* Vladimir Kruchinin, Oct 05 2013 */
-
T(n,k)=if(k==0,1, if(k==n, (n!)^2, n^2*T(n-1, k-1) + T(n-1, k)));
for(n=0,8, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 14 2019
-
# This triangle is (0,0)-based.
def A008955(n, k) :
if k==0 : return 1
if k==n : return factorial(n)^2
return n^2*A008955(n-1, k-1) + A008955(n-1, k)
for n in (0..7) : print([A008955(n, k) for k in (0..n)]) # Peter Luschny, Feb 04 2012
There's an error in the last column of Riordan's table (change 46076 to 21076).
Discussion of Riordan's definition of central factorial numbers added by
N. J. A. Sloane, Feb 01 2011
A241171
Triangle read by rows: Joffe's central differences of zero, T(n,k), 1 <= k <= n.
Original entry on oeis.org
1, 1, 6, 1, 30, 90, 1, 126, 1260, 2520, 1, 510, 13230, 75600, 113400, 1, 2046, 126720, 1580040, 6237000, 7484400, 1, 8190, 1171170, 28828800, 227026800, 681080400, 681080400, 1, 32766, 10663380, 494053560, 6972966000, 39502663200, 95351256000, 81729648000, 1, 131070, 96461910, 8203431600, 196556560200, 1882311631200, 8266953895200, 16672848192000, 12504636144000
Offset: 1
Triangle begins:
1,
1, 6,
1, 30, 90,
1, 126, 1260, 2520,
1, 510, 13230, 75600, 113400,
1, 2046, 126720, 1580040, 6237000, 7484400,
1, 8190, 1171170, 28828800, 227026800, 681080400, 681080400,
1, 32766, 10663380, 494053560, 6972966000, 39502663200, 95351256000, 81729648000,
...
From _Peter Bala_, Aug 20 2014: (Start)
Row 2: [1,6]
k Ordered set partitions of {1,2,3,4} into k blocks Number
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 {1,2,3,4} 1
2 {1,2}{3,4}, {3,4}{1,2}, {1,3}{2,4}, {2,4}{1,3}, 6
{1,4}{2,3}, {2,3}{1,4}
(End)
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 283.
- S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126.
- S. A. Joffe, Calculation of eighteen more, fifty in all, Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 48 (1917-1920), 193-271.
Case m=2 of the polynomials defined in
A278073.
-
Flat(List([1..10],n->List([1..n],k->1/(2^(k-1))*Sum([1..k],j->(-1)^(k-j)*Binomial(2*k,k-j)*j^(2*n))))); # Muniru A Asiru, Feb 27 2019
-
T := proc(n,k) option remember;
if k > n then 0
elif k=0 then k^n
elif k=1 then 1
else k*(2*k-1)*T(n-1,k-1)+k^2*T(n-1,k); fi;
end: # Minor edit to make it also work in the (0,0)-offset case. Peter Luschny, Sep 03 2022
for n from 1 to 12 do lprint([seq(T(n,k), k=1..n)]); od:
-
T[n_, k_] /; 1 <= k <= n := T[n, k] = k(2k-1) T[n-1, k-1] + k^2 T[n-1, k]; T[, 1] = 1; T[, ] = 0; Table[T[n, k], {n, 1, 9}, {k, 1, n}] (* _Jean-François Alcover, Jul 03 2019 *)
-
@cached_function
def A241171(n, k):
if n == 0 and k == 0: return 1
if k < 0 or k > n: return 0
return (2*k^2 - k)*A241171(n - 1, k - 1) + k^2*A241171(n - 1, k)
for n in (1..6): print([A241171(n, k) for k in (1..n)]) # Peter Luschny, Sep 06 2017
A156289
Triangle read by rows: T(n,k) is the number of end rhyme patterns of a poem of an even number of lines (2n) with 1<=k<=n evenly rhymed sounds.
Original entry on oeis.org
1, 1, 3, 1, 15, 15, 1, 63, 210, 105, 1, 255, 2205, 3150, 945, 1, 1023, 21120, 65835, 51975, 10395, 1, 4095, 195195, 1201200, 1891890, 945945, 135135, 1, 16383, 1777230, 20585565, 58108050, 54864810, 18918900, 2027025, 1, 65535, 16076985
Offset: 1
The triangle begins
n\k|..1.....2......3......4......5......6
=========================================
.1.|..1
.2.|..1.....3
.3.|..1....15.....15
.4.|..1....63....210....105
.5.|..1...255...2205...3150....945
.6.|..1..1023..21120..65835..51975..10395
..
T(3,3) = 15. The 15 partitions of the set [6] into three even blocks are:
(12)(34)(56), (12)(35)(46), (12)(36)(45),
(13)(24)(56), (13)(25)(46), (13)(26)(45),
(14)(23)(56), (14)(25)(36), (14)(26)(35),
(15)(23)(46), (15)(24)(36), (15)(26)(34),
(16)(23)(45), (16)(24)(35), (16)(25)(34).
Examples of recurrence relation
T(4,3) = 5*T(3,2) + 9*T(3,3) = 5*15 + 9*15 = 210;
T(6,5) = 9*T(5,4) + 25*T(5,5) = 9*3150 + 25*945 = 51975.
T(4,2) = 28 + 35 = 63 (M_3 multinomials A036040 for partitions of 8 with 3 even parts, namely (2,6) and (4^2)). - _Wolfdieter Lang_, May 13 2015
- L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pages 225-226.
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened)
- Richard Olu Awonusika, On Jacobi polynomials P_k(alpha, beta) and coefficients c_j^L(alpha, beta) (k >= 0, L = 5,6; 1 <= j <= L; alpha, beta > -1), The Journal of Analysis (2020).
- Thomas Browning, Counting Parabolic Double Cosets in Symmetric Groups, arXiv:2010.13256 [math.CO], 2020.
- J. Riordan, Letter, Jul 06 1978
2nd column variant T(n, 2)/3, for 2<=n, is
A002450.
3rd column variant T(n, 3)/15, for 3<=n, is
A002451.
-
T := proc(n,k) option remember; `if`(k = 0 and n = 0, 1, `if`(n < 0, 0,
(2*k-1)*T(n-1, k-1) + k^2*T(n-1, k))) end:
for n from 1 to 8 do seq(T(n,k), k=1..n) od; # Peter Luschny, Sep 04 2017
-
T[n_,k_] := Which[n < k, 0, n == 1, 1, True, 2/Factorial2[2 k] Sum[(-1)^(k + j) Binomial[2 k, k + j] j^(2 n), {j, 1, k}]]
(* alternate computation with function triangle[] defined in A257490 *)
a[n_]:=Map[Apply[Plus,#]&,triangle[n],{2}]
(* Hartmut F. W. Hoft, Apr 26 2015 *)
A298851
a(n) = [x^n] Product_{k=1..n} 1/(1-k^2*x).
Original entry on oeis.org
1, 1, 21, 1408, 196053, 46587905, 16875270660, 8657594647800, 5974284925007685, 5336898188553325075, 5992171630749371157181, 8260051854943114812198756, 13714895317396748230146099660, 26998129079190909699998105620908, 62173633286588800021263427046090792
Offset: 0
-
b:= proc(k, n) option remember; `if`(k=0, 1,
add(b(k-1, j)*j^2, j=1..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..14); # Alois P. Heinz, Feb 19 2022
-
Table[SeriesCoefficient[Product[1/(1 - k^2*x), {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 02 2018 *)
Join[{1}, Table[2*Sum[(-1)^(n-k) * Binomial[2*n, n-k] * k^(4*n), {k, 0, n}]/(2*n)!, {n, 1, 20}]] (* Vaclav Kotesovec, May 15 2025 *)
-
a(n):=if n<1 then 1 else 2*sum((n-k)^(4*n)/((2*n-k)!*k!*(-1)^k),k,0,n);
makelist(a(n), n, 0, 20); /* Tani Akinari, Mar 09 2021 */
A008958
Triangle of central factorial numbers 4^k T(2n+1, 2n+1-2k).
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 35, 91, 1, 1, 84, 966, 820, 1, 1, 165, 5082, 24970, 7381, 1, 1, 286, 18447, 273988, 631631, 66430, 1, 1, 455, 53053, 1768195, 14057043, 15857205, 597871, 1, 1, 680, 129948, 8187608, 157280838, 704652312, 397027996, 5380840, 1
Offset: 0
From _Wesley Transue_, Jan 21 2012: (Start)
Triangle begins:
1;
1, 1;
1, 10, 1;
1, 35, 91, 1;
1, 84, 966, 820, 1;
1, 165, 5082, 24970, 7381, 1;
1, 286, 18447, 273988, 631631, 66430, 1;
1, 455, 53053, 1768195, 14057043, 15857205, 597871, 1;
1, 680, 129948, 8187608, 157280838, 704652312, 397027996, 5380840, 1;
(End)
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- Robert James Purser, Mobius Net Cubed-Sphere Gnomonic Grids, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Centers for Environmental Protection, 2018.
-
Flatten[Table[Sum[(-1)^(q+1) 4^(p-n) (2p+2q-2n-1)^(2n+1)/((2n+1-2p-q)! q!), {q, 0, n-p}], {n, 0, 8}, {p, 0, n}]] (* Wesley Transue, Jan 21 2012 *)
A269945
Triangle read by rows. Stirling set numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + k^2*T(n-1, k), for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 21, 14, 1, 0, 1, 85, 147, 30, 1, 0, 1, 341, 1408, 627, 55, 1, 0, 1, 1365, 13013, 11440, 2002, 91, 1, 0, 1, 5461, 118482, 196053, 61490, 5278, 140, 1, 0, 1, 21845, 1071799, 3255330, 1733303, 251498, 12138, 204, 1
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 1, 1]
[3] [0, 1, 5, 1]
[4] [0, 1, 21, 14, 1]
[5] [0, 1, 85, 147, 30, 1]
[6] [0, 1, 341, 1408, 627, 55, 1]
-
T := proc(n, k) option remember;
`if`(n=k, 1,
`if`(k<0 or k>n, 0,
T(n-1, k-1) + k^2*T(n-1, k))) end:
for n from 0 to 9 do seq(T(n, k), k=0..n) od;
# Alternatively with the P-transform (cf. A269941):
A269945_row := n -> PTrans(n, n->`if`(n=1, 1, 1/(n*(4*n-2))), (n, k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269945_row(n)), n=0..8);
# Using the exponential generating function:
egf := 1 + t^2*(cosh(2*sinh(t*x/2)/t));
ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, 2*(n-k+1)), k = 0..n):
seq(print(Trow(n)), n = 0..9); # Peter Luschny, Feb 29 2024
-
T[n_, n_] = 1; T[n_ /; n >= 0, k_] /; 0 <= k < n := T[n, k] = T[n - 1, k - 1] + k^2*T[n - 1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
(* Jean-François Alcover, Nov 27 2017 *)
-
# uses[PtransMatrix from A269941]
stirset2 = lambda n: 1 if n == 1 else 1/(n*(4*n-2))
norm = lambda n,k: (-1)^k*factorial(2*n)/factorial(2*k)
M = PtransMatrix(7, stirset2, norm)
for m in M: print(m)
A002451
Expansion of 1/((1-x)*(1-4*x)*(1-9*x)).
Original entry on oeis.org
1, 14, 147, 1408, 13013, 118482, 1071799, 9668036, 87099705, 784246870, 7059619931, 63542171784, 571901915677, 5147206719578, 46325218390143, 416928397167052, 3752361301126529, 33771274616631006, 303941563175648035, 2735474435084708240, 24619271381777877861
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 35.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (14,-49,36).
-
List([0..30],n->1/24-4^(n+2)/15+9^(n+2)/40); # Muniru A Asiru, Dec 18 2018
-
[(10 - 4^(n+4) +6*9^(n+2))/240: n in [0..30]]; // G. C. Greubel, Jul 04 2019
-
a:=n->sum((9^(n-j)-4^(n-j))/5,j=0..n): seq(a(n), n=1..30); # Zerinvary Lajos, Jan 15 2007
A002451:=-1/(z-1)/(4*z-1)/(9*z-1); # Simon Plouffe in his 1992 dissertation
-
CoefficientList[Series[1/((1-x)(1-4x)(1-9x)), {x, 0, 30}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
-
Vec(1/((1-x)*(1-4*x)*(1-9*x))+O(x^30)) \\ Charles R Greathouse IV, Sep 23 2012
-
[(10 - 4^(n+4) +6*9^(n+2))/240 for n in (0..30)] # G. C. Greubel, Jul 04 2019
A008957
Triangle of central factorial numbers T(2*n,2*n-2*k), k >= 0, n >= 1 (in Riordan's notation).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 14, 21, 1, 1, 30, 147, 85, 1, 1, 55, 627, 1408, 341, 1, 1, 91, 2002, 11440, 13013, 1365, 1, 1, 140, 5278, 61490, 196053, 118482, 5461, 1, 1, 204, 12138, 251498, 1733303, 3255330, 1071799, 21845, 1, 1, 285, 25194, 846260, 10787231
Offset: 1
The triangle starts:
1;
1, 1;
1, 5, 1;
1, 14, 21, 1;
1, 30, 147, 85, 1;
1, 55, 627, 1408, 341, 1;
1, 91, 2002, 11440, 13013, 1365, 1;
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217, Table 6.2(a).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.
- Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened
- F. Alayont and N. Krzywonos, Rook Polynomials in Three and Higher Dimensions, 2012. [From _N. J. A. Sloane_, Jan 02 2013]
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:math/9207222, Jul 1992. See bottom of page 10. [From _Michael Somos_, May 08 2018]
- Petro Kolosov, Polynomial identities involving central factorial numbers, GitHub, 2024. See p. 6.
-
a008957 n k = a008957_tabl !! (n-1) (k-1)
a008957_row n = a008957_tabl !! (n-1)
a008957_tabl = map reverse a036969_tabl
-- Reinhard Zumkeller, Feb 18 2013
-
A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end; # Gives rows of triangle in reversed order
-
t[n_, n_] = t[n_, 1] = 1;
t[n_, k_] := t[n-1, k-1] + k^2 t[n-1, k];
Flatten[Table[t[n, k], {n, 1, 10}, {k, n, 1, -1}]][[1 ;; 50]] (* Jean-François Alcover, Jun 16 2011 *)
-
{T(n, k) = if( n<1 || k>n, 0, n==k || k==1, 1, T(n-1, k-1) + k^2 * T(n-1, k))}; \\ Michael Somos, May 08 2018
-
def A008957(n, k):
m = n - k
return 2*sum((-1)^(j+m)*(j+1)^(2*n)/(factorial(j+m+2)*factorial(m-j)) for j in (0..m))
for n in (1..7): print([A008957(n, k) for k in (1..n)]) # Peter Luschny, May 10 2018
Showing 1-10 of 16 results.
Next
Comments