A036969
Triangle read by rows: T(n,k) = T(n-1,k-1) + k^2*T(n-1,k), 1 < k <= n, T(n,1) = 1.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 14, 1, 1, 85, 147, 30, 1, 1, 341, 1408, 627, 55, 1, 1, 1365, 13013, 11440, 2002, 91, 1, 1, 5461, 118482, 196053, 61490, 5278, 140, 1, 1, 21845, 1071799, 3255330, 1733303, 251498, 12138, 204, 1, 1, 87381, 9668036, 53157079, 46587905
Offset: 1
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 21, 14, 1;
1, 85, 147, 30, 1;
1, 341, 1408, 627, 55, 1;
1, 1365, 13013, 11440, 2002, 91, 1;
1, 5461, 118482, 196053, 61490, 5278, 140, 1;
...
T(3,2) = 5: The five set partitions into two sets are {1,1',2,2'}{3,3'}, {1,1',3,3'}{2,2'}, {1,1'}{2,2',3,3'}, {1,1',3}{2,2',3'} and {1,1',3'}{2,2',3}.
- L. Carlitz, A conjecture concerning Genocchi numbers. Norske Vid. Selsk. Skr. (Trondheim) 1971, no. 9, 4 pp. [The triangle appears on page 2.]
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.
- Vincenzo Librandi, Rows n = 1..100 of triangle, flattened
- Thomas Browning, Counting Parabolic Double Cosets in Symmetric Groups, arXiv:2010.13256 [math.CO], 2020.
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt. Central factorial numbers; their main properties and some applications, Num. Funct. Anal. Optim., 10 (1989) 419-488.
- José L. Cereceda, Sums of powers of integers and the sequence A304330, arXiv:2405.05268 [math.GM], 2024. See p. 2.
- M. W. Coffey and M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
- Qi Fang, Ya-Nan Feng, and Shi-Mei Ma, Alternating runs of permutations and the central factorial numbers, arXiv:2202.13978 [math.CO], 2022.
- F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265. - From _N. J. A. Sloane_, Jan 02 2013
- Petro Kolosov, Polynomial identities involving central factorial numbers, GitHub, 2024. See p. 6.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- S. Matsumoto and J. Novak, Jucys-Murphy Elements and Unitary Matrix Integrals arXiv.0905.1992 [math.CO], 2009-2012.
- B. K. Miceli, Two q-Analogues of Poly-Stirling Numbers, J. Integer Seq., 14 (2011), 11.9.6.
- John Riordan, Letter, Apr 28 1976.
- John Riordan, Letter, Jul 06 1978
- Richard P. Stanley, Hook Lengths and Contents.
-
a036969 n k = a036969_tabl !! (n-1) (k-1)
a036969_row n = a036969_tabl !! (n-1)
a036969_tabl = iterate f [1] where
f row = zipWith (+)
([0] ++ row) (zipWith (*) (tail a000290_list) (row ++ [0]))
-- Reinhard Zumkeller, Feb 18 2013
-
A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end;
-
t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!), {j, 1, k}]; Flatten[ Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Oct 11 2011 *)
t1[n_, k_] := (1/(2 k)!) * Sum[Binomial[2 k, j]*(-1)^j*(k - j)^(2 n), {j, 0, 2 k}]; Column[Table[t1[n, k], {n, 1, 10}, {k, 1, n}]] (* Kolosov Petro ,Jul 26 2023 *)
-
T(n,k)=if(1M. F. Hasler, Feb 03 2012
-
T(n,k)=2*sum(j=1,k,(-1)^(k-j)*j^(2*n)/(k-j)!/(k+j)!) \\ M. F. Hasler, Feb 03 2012
-
def A036969(n,k) : return (2/factorial(2*k))*add((-1)^j*binomial(2*k,j)*(k-j)^(2*n) for j in (0..k))
for n in (1..7) : print([A036969(n,k) for k in (1..n)]) # Peter Luschny, Feb 03 2012
A298851
a(n) = [x^n] Product_{k=1..n} 1/(1-k^2*x).
Original entry on oeis.org
1, 1, 21, 1408, 196053, 46587905, 16875270660, 8657594647800, 5974284925007685, 5336898188553325075, 5992171630749371157181, 8260051854943114812198756, 13714895317396748230146099660, 26998129079190909699998105620908, 62173633286588800021263427046090792
Offset: 0
-
b:= proc(k, n) option remember; `if`(k=0, 1,
add(b(k-1, j)*j^2, j=1..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..14); # Alois P. Heinz, Feb 19 2022
-
Table[SeriesCoefficient[Product[1/(1 - k^2*x), {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 02 2018 *)
Join[{1}, Table[2*Sum[(-1)^(n-k) * Binomial[2*n, n-k] * k^(4*n), {k, 0, n}]/(2*n)!, {n, 1, 20}]] (* Vaclav Kotesovec, May 15 2025 *)
-
a(n):=if n<1 then 1 else 2*sum((n-k)^(4*n)/((2*n-k)!*k!*(-1)^k),k,0,n);
makelist(a(n), n, 0, 20); /* Tani Akinari, Mar 09 2021 */
A269944
Triangle read by rows, Stirling cycle numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + (n-1)^2*T(n-1, k), for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 5, 1, 0, 36, 49, 14, 1, 0, 576, 820, 273, 30, 1, 0, 14400, 21076, 7645, 1023, 55, 1, 0, 518400, 773136, 296296, 44473, 3003, 91, 1, 0, 25401600, 38402064, 15291640, 2475473, 191620, 7462, 140, 1
Offset: 0
Triangle starts:
[1]
[0, 1]
[0, 1, 1]
[0, 4, 5, 1]
[0, 36, 49, 14, 1]
[0, 576, 820, 273, 30, 1]
[0, 14400, 21076, 7645, 1023, 55, 1]
-
T := proc(n, k) option remember; if n=k then return 1 fi; if k<0 or k>n then return 0 fi; T(n-1, k-1)+(n-1)^2*T(n-1, k) end: seq(seq(T(n, k), k=0..n), n=0..8);
# Alternatively with the P-transform (cf. A269941):
A269944_row := n -> PTrans(n, n->`if`(n=1, 1, (n-1)^2/(n*(4*n-2))), (n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269944_row(n)), n=0..8);
# From Peter Luschny, Feb 29 2024: (Start)
# Computed as the coefficients of polynomials:
P := (x, n) -> local j; mul((j - x)*(j + x), j = 0..n-1):
T := (n, k) -> (-1)^k*coeff(P(x, n), x, 2*k):
for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
# Alternative, using the exponential generating function:
egf := cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)):
ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, n-k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # (End)
# Alternative, row polynomials:
rowpoly := n -> pochhammer(-sqrt(x), n) * pochhammer(sqrt(x), n):
row := n -> local k; seq((-1)^k*coeff(expand(rowpoly(n)), x, k), k = 0..n):
seq(print(row(n)), n = 0..6); # Peter Luschny, Aug 03 2024
-
T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + (n - 1)^2*T[n - 1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
(* Jean-François Alcover, Jul 25 2019 *)
-
stircycle2 = lambda n: 1 if n == 1 else (n-1)^2/(n*(4*n-2))
norm = lambda n,k: (-1)^k*factorial(2*n)/factorial(2*k)
M = PtransMatrix(7, stircycle2, norm)
for m in M: print(m)
A008957
Triangle of central factorial numbers T(2*n,2*n-2*k), k >= 0, n >= 1 (in Riordan's notation).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 14, 21, 1, 1, 30, 147, 85, 1, 1, 55, 627, 1408, 341, 1, 1, 91, 2002, 11440, 13013, 1365, 1, 1, 140, 5278, 61490, 196053, 118482, 5461, 1, 1, 204, 12138, 251498, 1733303, 3255330, 1071799, 21845, 1, 1, 285, 25194, 846260, 10787231
Offset: 1
The triangle starts:
1;
1, 1;
1, 5, 1;
1, 14, 21, 1;
1, 30, 147, 85, 1;
1, 55, 627, 1408, 341, 1;
1, 91, 2002, 11440, 13013, 1365, 1;
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217, Table 6.2(a).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.
- Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened
- F. Alayont and N. Krzywonos, Rook Polynomials in Three and Higher Dimensions, 2012. [From _N. J. A. Sloane_, Jan 02 2013]
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:math/9207222, Jul 1992. See bottom of page 10. [From _Michael Somos_, May 08 2018]
- Petro Kolosov, Polynomial identities involving central factorial numbers, GitHub, 2024. See p. 6.
-
a008957 n k = a008957_tabl !! (n-1) (k-1)
a008957_row n = a008957_tabl !! (n-1)
a008957_tabl = map reverse a036969_tabl
-- Reinhard Zumkeller, Feb 18 2013
-
A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end; # Gives rows of triangle in reversed order
-
t[n_, n_] = t[n_, 1] = 1;
t[n_, k_] := t[n-1, k-1] + k^2 t[n-1, k];
Flatten[Table[t[n, k], {n, 1, 10}, {k, n, 1, -1}]][[1 ;; 50]] (* Jean-François Alcover, Jun 16 2011 *)
-
{T(n, k) = if( n<1 || k>n, 0, n==k || k==1, 1, T(n-1, k-1) + k^2 * T(n-1, k))}; \\ Michael Somos, May 08 2018
-
def A008957(n, k):
m = n - k
return 2*sum((-1)^(j+m)*(j+1)^(2*n)/(factorial(j+m+2)*factorial(m-j)) for j in (0..m))
for n in (1..7): print([A008957(n, k) for k in (1..n)]) # Peter Luschny, May 10 2018
A269948
Triangle read by rows, Stirling set numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+k^3*T(n-1, k), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 9, 1, 0, 1, 73, 36, 1, 0, 1, 585, 1045, 100, 1, 0, 1, 4681, 28800, 7445, 225, 1, 0, 1, 37449, 782281, 505280, 35570, 441, 1, 0, 1, 299593, 21159036, 33120201, 4951530, 130826, 784, 1
Offset: 0
1,
0, 1,
0, 1, 1,
0, 1, 9, 1,
0, 1, 73, 36, 1,
0, 1, 585, 1045, 100, 1,
0, 1, 4681, 28800, 7445, 225, 1,
0, 1, 37449, 782281, 505280, 35570, 441, 1.
-
T := proc(n, k) option remember;
`if`(n=k, 1,
`if`(k<0 or k>n, 0,
T(n-1, k-1) + k^3*T(n-1, k))) end:
for n from 0 to 9 do seq(T(n,k), k=0..n) od;
-
T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + k^3*T[n - 1, k]; T[, ] = 0;
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2019 *)
A383838
Expansion of 1/((1-x) * (1-4*x) * (1-9*x) * (1-16*x)).
Original entry on oeis.org
1, 30, 627, 11440, 196053, 3255330, 53157079, 860181300, 13850000505, 222384254950, 3565207699131, 57106865357880, 914281747641757, 14633655168987690, 234184807922193183, 3747373855152257980, 59961734043737254209, 959421515974412698350, 15351048197153778821635
Offset: 0
A268434
Triangle read by rows, Lah numbers of order 2, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 10, 10, 1, 0, 100, 140, 28, 1, 0, 1700, 2900, 840, 60, 1, 0, 44200, 85800, 31460, 3300, 110, 1, 0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1, 0, 81770000, 185874000, 90563200, 14700400, 943800, 25480, 280, 1
Offset: 0
[1]
[0, 1]
[0, 2, 1]
[0, 10, 10, 1]
[0, 100, 140, 28, 1]
[0, 1700, 2900, 840, 60, 1]
[0, 44200, 85800, 31460, 3300, 110, 1]
[0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1]
-
T := proc(n,k) option remember;
if n=k then return 1 fi; if k<0 or k>n then return 0 fi;
T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k) end:
seq(seq(T(n,k), k=0..n), n=0..8);
# Alternatively with the P-transform (cf. A269941):
A268434_row := n -> PTrans(n, n->`if`(n=1,1, ((n-1)^2+1)/(n*(4*n-2))),
(n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A268434_row(n)), n=0..8);
-
T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^2 + k^2)*T[n-1, k]; T[, ] = 0;
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
-
#cached_function
def T(n, k):
if n==k: return 1
if k<0 or k>n: return 0
return T(n-1, k-1)+((n-1)^2+k^2)*T(n-1, k)
for n in range(8): print([T(n, k) for k in (0..n)])
# Alternatively with the function PtransMatrix (cf. A269941):
PtransMatrix(8, lambda n: 1 if n==1 else ((n-1)^2+1)/(n*(4*n-2)), lambda n, k: (-1)^k*factorial(2*n)/factorial(2*k))
A348081
a(n) = [x^n] Product_{k=1..2*n} 1/(1 - k^2 * x).
Original entry on oeis.org
1, 5, 627, 251498, 209609235, 298201326150, 646748606934510, 1986821811445598260, 8209989926930833199235, 43919039258570117113742270, 295300365118450495520630242042, 2437724587984574697761809904387340, 24239364659088896670563082403144467630
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 - k^2*x), {k, 1, 2*n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2021 *)
-
a(n) = polcoef(1/prod(k=1, 2*n, 1-k^2*x+x*O(x^n)), n);
A383840
Expansion of 1/((1-x) * (1-4*x) * (1-9*x) * (1-16*x) * (1-25*x)).
Original entry on oeis.org
1, 55, 2002, 61490, 1733303, 46587905, 1217854704, 31306548900, 796513723005, 20135227330075, 506945890951006, 12730754139133030, 319183135225967507, 7994212035818175365, 200089485703376577308, 5005984516439566690680, 125209574645032904521209
Offset: 0
A370705
Triangle read by rows: T(n, k) = numerator(CF(n, k)) where CF(n, k) = n! * [x^k] [t^n] (t/2 + sqrt(1 + (t/2)^2))^(2*x).
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 9, 0, -5, 0, 1, 0, 0, 4, 0, -5, 0, 1, 0, -225, 0, 259, 0, -35, 0, 1, 0, 0, -36, 0, 49, 0, -14, 0, 1, 0, 11025, 0, -3229, 0, 987, 0, -21, 0, 1, 0, 0, 576, 0, -820, 0, 273, 0, -30, 0, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 0, 1;
[3] 0, -1, 0, 1;
[4] 0, 0, -1, 0, 1;
[5] 0, 9, 0, -5, 0, 1;
[6] 0, 0, 4, 0, -5, 0, 1;
[7] 0, -225, 0, 259, 0, -35, 0, 1;
[8] 0, 0, -36, 0, 49, 0, -14, 0, 1;
[9] 0, 11025, 0, -3229, 0, 987, 0, -21, 0, 1;
- Johan Frederik Steffensen, On a class of quadrature formulae. Proceedings of the International Mathematical Congress Toronto 1924, Vol 2, pp. 837-844.
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt. Central factorial numbers; their main properties and some applications, Num. Funct. Anal. Optim., 10 (1989) 419-488.
- Leonard Carlitz and John Riordan, The Divided Central Differences of Zero, Canadian Journal of Mathematics, Volume 15, 1963, pp. 94-100.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- Johan Frederik Steffensen, On the Definition of the Central Factorial, Journal of the Institute of Actuaries, Volume 64, Issue 2, July 1933, pp. 165-168.
See the discussion by Sloane in
A008955 of Riordan's notation. In particular, the notation 'T' below does not refer to the present triangle.
Central factorials (rational, general case): (this triangle) /
A370703;
t(2n, 2k) (first kind, 'even case')
A204579; (signed, T(n, 0) missing)
|t(2n, 2k)|
A269944; (unsigned, T(n, 0) = 0^n)
-
gf := (t/2 + sqrt(1 + (t/2)^2))^(2*x): ser := series(gf, t, 20):
ct := n -> n!*coeff(ser, t, n):
T := (n, k) -> numer(coeff(ct(n), x, k)):
seq(seq(T(n, k), k = 0..n), n = 0..10);
# Filtering the central factorials of the first resp. second kind:
CF1 := (T,len) -> local n,k; seq(print(seq(T(n,k), k=0..n, 2)), n = 0..len, 2);
CF2 := (T,len) -> local n,k; seq(print(seq(T(n,k), k=1..n, 2)), n = 1..len, 2);
Showing 1-10 of 10 results.
Comments