cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A036969 Triangle read by rows: T(n,k) = T(n-1,k-1) + k^2*T(n-1,k), 1 < k <= n, T(n,1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 21, 14, 1, 1, 85, 147, 30, 1, 1, 341, 1408, 627, 55, 1, 1, 1365, 13013, 11440, 2002, 91, 1, 1, 5461, 118482, 196053, 61490, 5278, 140, 1, 1, 21845, 1071799, 3255330, 1733303, 251498, 12138, 204, 1, 1, 87381, 9668036, 53157079, 46587905
Offset: 1

Views

Author

Keywords

Comments

Or, triangle of central factorial numbers T(2n,2k) (in Riordan's notation).
Can be used to calculate the Bernoulli numbers via the formula B_2n = (1/2)*Sum_{k = 1..n} (-1)^(k+1)*(k-1)!*k!*T(n,k)/(2*k+1). E.g., n = 1: B_2 = (1/2)*1/3 = 1/6. n = 2: B_4 = (1/2)*(1/3 - 2/5) = -1/30. n = 3: B_6 = (1/2)*(1/3 - 2*5/5 + 2*6/7) = 1/42. - Philippe Deléham, Nov 13 2003
From Peter Bala, Sep 27 2012: (Start)
Generalized Stirling numbers of the second kind. T(n,k) is equal to the number of partitions of the set {1,1',2,2',...,n,n'} into k disjoint nonempty subsets V1,...,Vk such that, for each 1 <= j <= k, if i is the least integer such that either i or i' belongs to Vj then {i,i'} is a subset of Vj. An example is given below.
Thus T(n,k) may be thought of as a two-colored Stirling number of the second kind. See Matsumoto and Novak, who also give another combinatorial interpretation of these numbers. (End)

Examples

			Triangle begins:
  1;
  1,    1;
  1,    5,      1;
  1,   21,     14,      1;
  1,   85,    147,     30,     1;
  1,  341,   1408,    627,    55,    1;
  1, 1365,  13013,  11440,  2002,   91,   1;
  1, 5461, 118482, 196053, 61490, 5278, 140, 1;
  ...
T(3,2) = 5: The five set partitions into two sets are {1,1',2,2'}{3,3'}, {1,1',3,3'}{2,2'}, {1,1'}{2,2',3,3'}, {1,1',3}{2,2',3'} and {1,1',3'}{2,2',3}.
		

References

  • L. Carlitz, A conjecture concerning Genocchi numbers. Norske Vid. Selsk. Skr. (Trondheim) 1971, no. 9, 4 pp. [The triangle appears on page 2.]
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.

Crossrefs

Columns are A002450, A002451.
Diagonals are A000330 and A060493.
Transpose of A008957.
(0,0)-based version: A269945.
Cf. A008955, A008956, A156289, A135920 (row sums), A204579 (inverse), A000290.

Programs

  • Haskell
    a036969 n k = a036969_tabl !! (n-1) (k-1)
    a036969_row n = a036969_tabl !! (n-1)
    a036969_tabl = iterate f [1] where
       f row = zipWith (+)
         ([0] ++ row) (zipWith (*) (tail a000290_list) (row ++ [0]))
    -- Reinhard Zumkeller, Feb 18 2013
  • Maple
    A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end;
  • Mathematica
    t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!), {j, 1, k}]; Flatten[ Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Oct 11 2011 *)
    t1[n_, k_] := (1/(2 k)!) * Sum[Binomial[2 k, j]*(-1)^j*(k - j)^(2 n), {j, 0, 2 k}]; Column[Table[t1[n, k], {n, 1, 10}, {k, 1, n}]] (* Kolosov Petro ,Jul 26 2023 *)
  • PARI
    T(n,k)=if(1M. F. Hasler, Feb 03 2012
    
  • PARI
    T(n,k)=2*sum(j=1,k,(-1)^(k-j)*j^(2*n)/(k-j)!/(k+j)!)  \\ M. F. Hasler, Feb 03 2012
    
  • Sage
    def A036969(n,k) : return (2/factorial(2*k))*add((-1)^j*binomial(2*k,j)*(k-j)^(2*n) for j in (0..k))
    for n in (1..7) : print([A036969(n,k) for k in (1..n)]) # Peter Luschny, Feb 03 2012
    

Formula

T(n,k) = A156289(n,k)/A001147(k). - Peter Bala, Feb 21 2011
From Peter Bala, Oct 14 2011: (Start)
O.g.f.: Sum_{n >= 1} x^n*t^n/Product_{k = 1..n} (1 - k^2*t^2) = x*t + (x + x^2)*t^2 + (x + 5*x^2 + x^3)*t^3 + ....
Define polynomials x^[2*n] = Product_{k = 0..n-1} (x^2 - k^2). This triangle gives the coefficients in the expansion of the monomials x^(2*n) as a linear combination of x^[2*m], 1 <= m <= n. For example, row 4 gives x^8 = x^[2] + 21*x^[4] + 14*x^[6] + x^[8].
A008955 is a signed version of the inverse.
The n-th row sum = A135920(n). (End)
T(n,k) = (2/(2*k)!)*Sum_{j=0..k-1} (-1)^(j+k+1) * binomial(2*k,j+k+1) * (j+1)^(2*n). This formula is valid for n >= 0 and 0 <= k <= n. - Peter Luschny, Feb 03 2012
From Peter Bala, Sep 27 2012: (Start)
Let E(x) = cosh(sqrt(2*x)) = Sum_{n >= 0} x^n/((2*n)!/2^n). A generating function for the triangle is E(t*(E(x)-1)) = 1 + t*x + t*(1 + t)*x^2/6 + t*(1 + 5*t + t^2)*x^3/90 + ..., where the sequence of denominators [1, 1, 6, 90, ...] is given by (2*n)!/2^n. Cf. A008277 which has generating function exp(t*(exp(x)-1)). An e.g.f. is E(t*(E(x^2/2)-1)) = 1 + t*x^2/2! + t*(1 + t)*x^4/4! + t*(1 + 5*t + t^2)*x^6/6! + ....
Put c(n) := (2*n)!/2^n. The column k generating function is (1/c(k))*(E(x)-1)^k = Sum_{n >= k} T(n,k)*x^n/c(n). The inverse array is A204579.
The production array begins:
1, 1;
0, 4, 1;
0, 0, 9, 1;
0, 0, 0, 16, 1;
... (End)
x^n = Sum_{k=1..n} T(n,k)*Product_{i=0..k-1} (x-i^2), see Stanley link. - Michel Marcus, Nov 19 2014; corrected by Kolosov Petro, Jul 26 2023
From Kolosov Petro, Jul 26 2023: (Start)
T(n,k) = (1/(2*k)!) * Sum_{j=0..2k} binomial(2k, j)*(-1)^j*(k - j)^(2n).
T(n,k) = (1/(k*(2k-1)!)) * Sum_{j=0..k} (-1)^(k-j)*binomial(2k, k-j)*j^(2n). (End)

Extensions

More terms from Vladeta Jovovic, Apr 16 2000

A298851 a(n) = [x^n] Product_{k=1..n} 1/(1-k^2*x).

Original entry on oeis.org

1, 1, 21, 1408, 196053, 46587905, 16875270660, 8657594647800, 5974284925007685, 5336898188553325075, 5992171630749371157181, 8260051854943114812198756, 13714895317396748230146099660, 26998129079190909699998105620908, 62173633286588800021263427046090792
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(k, n) option remember; `if`(k=0, 1,
          add(b(k-1, j)*j^2, j=1..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^2*x), {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 02 2018 *)
    Join[{1}, Table[2*Sum[(-1)^(n-k) * Binomial[2*n, n-k] * k^(4*n), {k, 0, n}]/(2*n)!, {n, 1, 20}]] (* Vaclav Kotesovec, May 15 2025 *)
  • Maxima
    a(n):=if n<1 then 1 else 2*sum((n-k)^(4*n)/((2*n-k)!*k!*(-1)^k),k,0,n);
    makelist(a(n), n, 0, 20); /* Tani Akinari, Mar 09 2021 */

Formula

From Vaclav Kotesovec, Feb 02 2018, updated May 12 2025: (Start)
a(n) ~ c * d^n * n^(2*n - 1/2), where d = 1.774513671664430848697327843228386312953174421074432567764556466987... and c = 0.617929515483613293691991371141292259390065108300160936187723552669...
In closed form, a(n) ~ n^(2*n - 1/2) * r^(4*n + 1) / (sqrt(Pi*(2 - r^2)) * (r^2 - 1)^n * exp(2*n)), where r = 1.04438203376083348498401390634474776086902815721... is the root of the equation (1-r)/(1+r) = -exp(-4/r). (End)
a(n) = 2*(Sum_{k=0..n} (n-k)^(4*n)/((2*n-k)!*k!*(-1)^k)) for n>0. - Tani Akinari, Mar 09 2021
a(n) = A036969(2n,n) = A269945(2n,n). - Alois P. Heinz, Feb 19 2022
From Seiichi Manyama, May 12 2025: (Start)
a(n) = Sum_{k=0..2*n} (-n)^k * binomial(4*n,k) * Stirling2(4*n-k,2*n).
a(n) = Sum_{k=0..2*n} (-1)^k * Stirling2(k+n,n) * Stirling2(3*n-k,n). (End)

A269944 Triangle read by rows, Stirling cycle numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + (n-1)^2*T(n-1, k), for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 5, 1, 0, 36, 49, 14, 1, 0, 576, 820, 273, 30, 1, 0, 14400, 21076, 7645, 1023, 55, 1, 0, 518400, 773136, 296296, 44473, 3003, 91, 1, 0, 25401600, 38402064, 15291640, 2475473, 191620, 7462, 140, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2016

Keywords

Comments

Also known as central factorial numbers |t(2*n, 2*k)| (cf. A008955).
The analog for the Stirling set numbers is A269945.

Examples

			Triangle starts:
  [1]
  [0,     1]
  [0,     1,     1]
  [0,     4,     5,    1]
  [0,    36,    49,   14,    1]
  [0,   576,   820,  273,   30,  1]
  [0, 14400, 21076, 7645, 1023, 55, 1]
		

Crossrefs

Variants: A204579 (signed, row 0 missing), A008955.
Cf. A007318 (order 0), A132393 (order 1), A269947 (order 3).
Cf. A000330 (subdiagonal), A001044 (column 1), A101686 (row sums), A269945 (Stirling set), A269941 (P-transform).

Programs

  • Maple
    T := proc(n, k) option remember; if n=k then return 1 fi; if k<0 or k>n then return 0 fi; T(n-1, k-1)+(n-1)^2*T(n-1, k) end: seq(seq(T(n, k), k=0..n), n=0..8);
    # Alternatively with the P-transform (cf. A269941):
    A269944_row := n -> PTrans(n, n->`if`(n=1, 1, (n-1)^2/(n*(4*n-2))), (n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269944_row(n)), n=0..8);
    # From Peter Luschny, Feb 29 2024: (Start)
    # Computed as the coefficients of polynomials:
    P := (x, n) -> local j; mul((j - x)*(j + x), j = 0..n-1):
    T := (n, k) -> (-1)^k*coeff(P(x, n), x, 2*k):
    for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
    # Alternative, using the exponential generating function:
    egf := cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)):
    ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
    Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, n-k), k = 0..n):
    seq(print(Trow(n)), n = 0..9);  # (End)
    # Alternative, row polynomials:
    rowpoly := n -> pochhammer(-sqrt(x), n) * pochhammer(sqrt(x), n):
    row := n -> local k; seq((-1)^k*coeff(expand(rowpoly(n)), x, k), k = 0..n):
    seq(print(row(n)), n = 0..6);  # Peter Luschny, Aug 03 2024
  • Mathematica
    T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + (n - 1)^2*T[n - 1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
    (* Jean-François Alcover, Jul 25 2019 *)
  • Sage
    stircycle2 = lambda n: 1 if n == 1 else (n-1)^2/(n*(4*n-2))
    norm = lambda n,k: (-1)^k*factorial(2*n)/factorial(2*k)
    M = PtransMatrix(7, stircycle2, norm)
    for m in M: print(m)

Formula

T(n,k) = (-1)^k*((2*n)! / (2*k)!)*P[n, k](s(n)) where P is the P-transform and s(n) = (n - 1)^2 / (n*(4*n - 2)). The P-transform is defined in the link. See the Sage and Maple implementations below.
T(n, 1) = ((n - 1)!)^2 for n >= 1 (cf. A001044).
T(n, n-1) = n*(n - 1)*(2*n - 1)/6 for n >= 1 (cf. A000330).
Row sums: Product_{k=1..n} ((k - 1)^2 + 1) for n >= 0 (cf. A101686).
From Fabián Pereyra, Apr 25 2022: (Start)
T(n,k) = (-1)^(n-k)*Sum_{j=2*k..2*n} Stirling1(2*n,j)*binomial(j,2*k)*(n-1)^(j-2*k).
T(n,k) = Sum_{j=0..2*k} (-1)^(j - k)*Stirling1(n, j)*Stirling1(n, 2*k - j). (End)
From Peter Luschny, Feb 29 2024: (Start)
T(n, k) = (-1)^k*[x^(2*k)] P(x, n) where P(x, n) = Product_{j=0..n-1} (j-x)*(j+x).
T(n, k) = (2*n)!*[t^(n-k)] [x^(2*n)] cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)). (End)
T(n, k) = (-1)^k*[x^k] Pochhammer(-sqrt(x), n) * Pochhammer(sqrt(x), n). - Peter Luschny, Aug 03 2024

A008957 Triangle of central factorial numbers T(2*n,2*n-2*k), k >= 0, n >= 1 (in Riordan's notation).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 14, 21, 1, 1, 30, 147, 85, 1, 1, 55, 627, 1408, 341, 1, 1, 91, 2002, 11440, 13013, 1365, 1, 1, 140, 5278, 61490, 196053, 118482, 5461, 1, 1, 204, 12138, 251498, 1733303, 3255330, 1071799, 21845, 1, 1, 285, 25194, 846260, 10787231
Offset: 1

Views

Author

Keywords

Comments

D. E. Knuth [1992] on page 10 gives the formula Sum n^(2m-1) = Sum_{k=1..m} (2k-1)! T(2m,2k) binomial(n+k, 2k) where T(m, k) is the central factorial number of the second kind. - Michael Somos, May 08 2018

Examples

			The triangle starts:
  1;
  1,  1;
  1,  5,    1;
  1, 14,   21,     1;
  1, 30,  147,    85,     1;
  1, 55,  627,  1408,   341,    1;
  1, 91, 2002, 11440, 13013, 1365, 1;
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217, Table 6.2(a).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.

Crossrefs

Row reversed version of A036969. (0,0)-based version: A269945.
Cf. A008955.

Programs

  • Haskell
    a008957 n k = a008957_tabl !! (n-1) (k-1)
    a008957_row n = a008957_tabl !! (n-1)
    a008957_tabl = map reverse a036969_tabl
    -- Reinhard Zumkeller, Feb 18 2013
    
  • Maple
    A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end; # Gives rows of triangle in reversed order
  • Mathematica
    t[n_, n_] = t[n_, 1] = 1;
    t[n_, k_] := t[n-1, k-1] + k^2 t[n-1, k];
    Flatten[Table[t[n, k], {n, 1, 10}, {k, n, 1, -1}]][[1 ;; 50]] (* Jean-François Alcover, Jun 16 2011 *)
  • PARI
    {T(n, k) = if( n<1 || k>n, 0, n==k || k==1, 1, T(n-1, k-1) + k^2 * T(n-1, k))}; \\ Michael Somos, May 08 2018
    
  • Sage
    def A008957(n, k):
        m = n - k
        return 2*sum((-1)^(j+m)*(j+1)^(2*n)/(factorial(j+m+2)*factorial(m-j)) for j in (0..m))
    for n in (1..7): print([A008957(n, k) for k in (1..n)]) # Peter Luschny, May 10 2018

Formula

From Michael Somos, May 08 2018: (Start)
T(n, k) = T(n-1, k-1) + k^2 * T(n-1, k), where T(n, n) = T(n, 1) = 1.
E.g.f.: x^2 * (cosh(sinh(y*x/2) / (x/2)) - 1) = (1*x^2)*y^2/2! + (1*x^2 + 1*x^4)*y^4/4! + (1*x^2 + 5*x^4 + 1*x^6)*y^6/6! + (1*x^2 + 14*x^4 + 21*x^6 + 1*x^8)*y^8/8! + ... (End)

Extensions

More terms from Vladeta Jovovic, Apr 16 2000

A269948 Triangle read by rows, Stirling set numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+k^3*T(n-1, k), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 9, 1, 0, 1, 73, 36, 1, 0, 1, 585, 1045, 100, 1, 0, 1, 4681, 28800, 7445, 225, 1, 0, 1, 37449, 782281, 505280, 35570, 441, 1, 0, 1, 299593, 21159036, 33120201, 4951530, 130826, 784, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2016

Keywords

Comments

Also called 3rd central factorial numbers.

Examples

			1,
0, 1,
0, 1, 1,
0, 1, 9,     1,
0, 1, 73,    36,     1,
0, 1, 585,   1045,   100,    1,
0, 1, 4681,  28800,  7445,   225,   1,
0, 1, 37449, 782281, 505280, 35570, 441, 1.
		

Crossrefs

Variant: A098436.
Cf. A007318 (order 0), A048993 (order 1), A269945 (order 2).

Programs

  • Maple
    T := proc(n, k) option remember;
        `if`(n=k, 1,
        `if`(k<0 or k>n, 0,
         T(n-1, k-1) + k^3*T(n-1, k))) end:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od;
  • Mathematica
    T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + k^3*T[n - 1, k]; T[, ] = 0;
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2019 *)

Formula

T(n,2) = (8^(n-1)-1)/7 for n>=1 (cf. A023001).
T(n,n-1) = (n*(n-1)/2)^2 for n>=1 (cf. A000537).
Row sums: A098437.

A383838 Expansion of 1/((1-x) * (1-4*x) * (1-9*x) * (1-16*x)).

Original entry on oeis.org

1, 30, 627, 11440, 196053, 3255330, 53157079, 860181300, 13850000505, 222384254950, 3565207699131, 57106865357880, 914281747641757, 14633655168987690, 234184807922193183, 3747373855152257980, 59961734043737254209, 959421515974412698350, 15351048197153778821635
Offset: 0

Views

Author

Seiichi Manyama, May 11 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (2*16^(n+3)-9^(n+4)+14*4^(n+3)-7)/2520;

Formula

a(n) = A269945(n+4,4).
a(n) = 30*a(n-1) - 273*a(n-2) + 820*a(n-3) - 576*a(n-4).
a(n) = (2*16^(n+3) - 9^(n+4) + 14*4^(n+3) - 7)/2520.
sinh(x)^8/8! = Sum_{k>=0} 4^k * a(k) * x^(2*k+8)/(2*k+8)!.
a(n) = (1/8!) * Sum_{k=0..8} (-1)^k * (4-k)^(2*n+8) * binomial(8,k).
a(n) = Sum_{k=0..2*n} (-4)^k * binomial(2*n+8,k) * Stirling2(2*n-k+8,8).
a(n) = Sum_{k=0..2*n} (-1)^k * Stirling2(k+4,4) * Stirling2(2*n-k+4,4).

A268434 Triangle read by rows, Lah numbers of order 2, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 10, 10, 1, 0, 100, 140, 28, 1, 0, 1700, 2900, 840, 60, 1, 0, 44200, 85800, 31460, 3300, 110, 1, 0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1, 0, 81770000, 185874000, 90563200, 14700400, 943800, 25480, 280, 1
Offset: 0

Views

Author

Peter Luschny, Mar 07 2016

Keywords

Comments

0

Examples

			[1]
[0,        1]
[0,        2,         1]
[0,       10,        10,        1]
[0,      100,       140,       28,        1]
[0,     1700,      2900,      840,       60,      1]
[0,    44200,     85800,    31460,     3300,    110,     1]
[0,  1635400,   3476200,  1501500,   203060,  10010,   182,   1]
		

Crossrefs

Cf. A038207 (order 0), A111596 (order 1), A269946 (order 3).

Programs

  • Maple
    T := proc(n,k) option remember;
    if n=k then return 1 fi; if k<0 or k>n then return 0 fi;
    T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k) end:
    seq(seq(T(n,k), k=0..n), n=0..8);
    # Alternatively with the P-transform (cf. A269941):
    A268434_row := n -> PTrans(n, n->`if`(n=1,1, ((n-1)^2+1)/(n*(4*n-2))),
    (n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A268434_row(n)), n=0..8);
  • Mathematica
    T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^2 + k^2)*T[n-1, k]; T[, ] = 0;
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
  • Sage
    #cached_function
    def T(n, k):
        if n==k: return 1
        if k<0 or k>n: return 0
        return T(n-1, k-1)+((n-1)^2+k^2)*T(n-1, k)
    for n in range(8): print([T(n, k) for k in (0..n)])
    # Alternatively with the function PtransMatrix (cf. A269941):
    PtransMatrix(8, lambda n: 1 if n==1 else ((n-1)^2+1)/(n*(4*n-2)), lambda n, k: (-1)^k*factorial(2*n)/factorial(2*k))

Formula

T(n,k) = (-1)^k*((2*n)!/(2*k)!)*P[n,k](s(n)) where P is the P-transform and s(n) = ((n-1)^2+1)/(n*(4*n-2)). The P-transform is defined in the link. Compare also the Sage and Maple implementations below.
T(n,k) = Sum_{j=k..n} A269944(n,j)*A269945(j,k).
T(n,1) = Product_{k=1..n} (k-1)^2+1 for n>=1 (cf. A101686).
T(n,n-1) = (n-1)*n*(2*n-1)/3 for n>=1 (cf. A006331).
Row sums: A269938.

A348081 a(n) = [x^n] Product_{k=1..2*n} 1/(1 - k^2 * x).

Original entry on oeis.org

1, 5, 627, 251498, 209609235, 298201326150, 646748606934510, 1986821811445598260, 8209989926930833199235, 43919039258570117113742270, 295300365118450495520630242042, 2437724587984574697761809904387340, 24239364659088896670563082403144467630
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^2*x), {k, 1, 2*n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2021 *)
  • PARI
    a(n) = polcoef(1/prod(k=1, 2*n, 1-k^2*x+x*O(x^n)), n);

Formula

a(n) ~ c * d^n * n!^2 / n^(3/2), where d = 78.52705817932973261726305432915417900827309581709564977985583533852704254... = (2+r)^6 / (r^2*(4+r)^2), where r = 0.329482909104375658581668801636329590897344... is the root of the equation 4+r = r*exp(6/(2+r)) and c = (2+r)/(Pi^(3/2)*sqrt(32 - 4*r*(4+r))) = 0.0815842039686253664272939415761688591712635596695065951780203519... - Vaclav Kotesovec, Oct 16 2021, updated May 17 2025
From Seiichi Manyama, May 13 2025: (Start)
a(n) = A036969(3*n,2*n) = A269945(3*n,2*n).
a(n) = (1/(4*n)!) * Sum_{k=0..4*n} (-1)^k * (2*n-k)^(6*n) * binomial(4*n,k).
a(n) = Sum_{k=0..2*n} (-2*n)^k * binomial(6*n,k) * Stirling2(6*n-k,4*n).
a(n) = Sum_{k=0..2*n} (-1)^k * Stirling2(2*n+k,2*n) * Stirling2(4*n-k,2*n). (End)

A383840 Expansion of 1/((1-x) * (1-4*x) * (1-9*x) * (1-16*x) * (1-25*x)).

Original entry on oeis.org

1, 55, 2002, 61490, 1733303, 46587905, 1217854704, 31306548900, 796513723005, 20135227330075, 506945890951006, 12730754139133030, 319183135225967507, 7994212035818175365, 200089485703376577308, 5005984516439566690680, 125209574645032904521209
Offset: 0

Views

Author

Seiichi Manyama, May 11 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (5*25^(n+4)-2*16^(n+5)+9^(n+6)-6*4^(n+6)+42)/362880;

Formula

a(n) = A269945(n+5,5).
a(n) = 55*a(n-1) - 1023*a(n-2) + 7645*a(n-3) - 21076*a(n-4) + 14400*a(n-5).
a(n) = (5*25^(n+4) - 2*16^(n+5) + 9^(n+6) - 6*4^(n+6) + 42)/362880.
sinh(x)^10/10! = Sum_{k>=0} 4^k * a(k) * x^(2*k+10)/(2*k+10)!.
a(n) = (1/10!) * Sum_{k=0..10} (-1)^k * (5-k)^(2*n+10) * binomial(10,k).
a(n) = Sum_{k=0..2*n} (-5)^k * binomial(2*n+10,k) * Stirling2(2*n-k+10,10).
a(n) = Sum_{k=0..2*n} (-1)^k * Stirling2(k+5,5) * Stirling2(2*n-k+5,5).

A370705 Triangle read by rows: T(n, k) = numerator(CF(n, k)) where CF(n, k) = n! * [x^k] [t^n] (t/2 + sqrt(1 + (t/2)^2))^(2*x).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 9, 0, -5, 0, 1, 0, 0, 4, 0, -5, 0, 1, 0, -225, 0, 259, 0, -35, 0, 1, 0, 0, -36, 0, 49, 0, -14, 0, 1, 0, 11025, 0, -3229, 0, 987, 0, -21, 0, 1, 0, 0, 576, 0, -820, 0, 273, 0, -30, 0, 1
Offset: 0

Views

Author

Peter Luschny, Mar 02 2024

Keywords

Comments

The rational triangle R(n, k) contains the central factorial numbers. The central factorial of the first kind is the even subtriangle of R, while the central factorial of the second kind is the odd subtriangle. Since the terms of the even subtriangle can be seen as integers, the rational nature of these numbers is generally disregarded. The denominators of the central factorial of second kind are powers of 4; therefore, they are often studied as integers in the form 4^(n-k)*R(n, k). We will refer to the subtriangles by CF1(n, k) and CF2(n, k).
We recall that if T(n, k) is a number triangle (0 <= k <= n) then
Teven(n, k) = [T(n, k), k=0..n step 2), n=0..len step 2]
is the even subtriangle of T, and the odd subtriangle of T is
Todd(n, k) = [T(n, k), k=1..n step 2), n=1..len step 2], where
'k=a..o step s' denotes the subrange [a, a+s, a+2*s, ..., a+s*floor((o-a)/s)].
The central factorial numbers have their origins in approximation theory and numerical mathematics. They were undoubtedly used for a long time when J. F. Steffensen used them to construct quadrature formulas and presented them in 1924 at the 7th ICM. Four decades later, Carlitz and Riordan adopted the idea for use in combinatorics. While Steffensen originally referred to the numbers as "central differences of nothing," the second part of the name was later omitted.

Examples

			Triangle starts:
[0] 1;
[1] 0,     1;
[2] 0,     0,   1;
[3] 0,    -1,   0,     1;
[4] 0,     0,  -1,     0,  1;
[5] 0,     9,   0,    -5,  0,   1;
[6] 0,     0,   4,     0, -5,   0,   1;
[7] 0,  -225,   0,   259,  0, -35,   0,   1;
[8] 0,     0, -36,     0, 49,   0, -14,   0, 1;
[9] 0, 11025,   0, -3229,  0, 987,   0, -21, 0, 1;
		

References

  • Johan Frederik Steffensen, On a class of quadrature formulae. Proceedings of the International Mathematical Congress Toronto 1924, Vol 2, pp. 837-844.

Crossrefs

See the discussion by Sloane in A008955 of Riordan's notation. In particular, the notation 'T' below does not refer to the present triangle.
Central factorials (rational, general case): (this triangle) / A370703;
t(2n, 2k) (first kind, 'even case') A204579; (signed, T(n, 0) missing)
|t(2n, 2k)| A269944; (unsigned, T(n, 0) = 0^n)
|t(2n, 2n-2k)| A008955;
|t(2n+1, 2n+1-2k)|*4^k A008956;
T(2n, 2k) (second kind, 'odd case') A269945, A036969;
T(2n+1, 2k+1)*4^(n-k) A160562.

Programs

  • Maple
    gf := (t/2 + sqrt(1 + (t/2)^2))^(2*x): ser := series(gf, t, 20):
    ct := n -> n!*coeff(ser, t, n):
    T := (n, k) -> numer(coeff(ct(n), x, k)):
    seq(seq(T(n, k), k = 0..n), n = 0..10);
    # Filtering the central factorials of the first resp. second kind:
    CF1 := (T,len) -> local n,k; seq(print(seq(T(n,k), k=0..n, 2)), n = 0..len, 2);
    CF2 := (T,len) -> local n,k; seq(print(seq(T(n,k), k=1..n, 2)), n = 1..len, 2);
Showing 1-10 of 10 results.