cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A350366 a(n) = [x^n] Product_{k=1..n} (1 + k*x)/(1 - k*x).

Original entry on oeis.org

1, 2, 18, 312, 8000, 271770, 11502162, 583036832, 34437042432, 2322677883330, 176137593178250, 14835018315726312, 1373972097646792800, 138787120025382437882, 15184417945878202716450, 1788809909368939651651200, 225755544056485027686459392
Offset: 0

Views

Author

Seiichi Manyama, Dec 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[Series[Product[(1 + k*x)/(1 - k*x), {k, 1, n}], {x, 0, n}], x, n]; Array[a, 17, 0] (* Amiram Eldar, Dec 27 2021 *)
    Table[Sum[(-1)^(n - k)*StirlingS1[n + 1, k + 1] * StirlingS2[k + n, n], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 29 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*stirling(n+1, k+1, 1)*stirling(k+n, n, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * Stirling1(n+1, k+1) * Stirling2(k+n, n).
a(n) ~ c * d^n * (n-1)!, where d = (1+r) / ((-1 + exp(r + LambertW(-1, -exp(-r)*r))) * LambertW(-exp(-1-r)*(1+r))) = 8.406107401279769476199925123910168..., r = 0.7545302104650497245839827141610818561001159135034... is the root of the equation r*(1 + r + LambertW(-exp(-1 - r)*(1 + r))) = -(1 + r)*(r + LambertW(-1, -exp(-r)*r)) and c = 0.281498742412700978029375818376931142913157133987685... - Vaclav Kotesovec, Dec 29 2021

A350376 a(n) = [x^n] Product_{k=1..n} 1/(1 - k*x)^2.

Original entry on oeis.org

1, 2, 23, 480, 14627, 587580, 29331038, 1750923328, 121673580435, 9648709656300, 859874920598850, 85078769750118144, 9254316901029412110, 1097635452798476278232, 140986468651523106196060, 19496446561112852736019200, 2887977880849714395963280515
Offset: 0

Views

Author

Seiichi Manyama, Dec 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[Series[Product[1/(1 - k*x)^2, {k, 1, n}], {x, 0, n}], x, n]; Array[a, 17, 0] (* Amiram Eldar, Dec 28 2021 *)
    Table[Sum[StirlingS2[n + k, n]*StirlingS2[2*n - k, n], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 29 2021 *)
  • PARI
    a(n) = sum(k=0, n, stirling(n+k, n, 2)*stirling(2*n-k, n, 2));

Formula

a(n) = Sum_{k=0..n} Stirling2(n+k, n) * Stirling2(2*n-k, n).
a(n) ~ c * d^n * (n-1)!, where d = 27 / (4*LambertW(-3*exp(-3/2)/2)^2 * (3 + 2*LambertW(-3*exp(-3/2)/2))) = 9.858422414446789720857925020919293523149... and c = sqrt(3/(-LambertW(-3*exp(-3/2)/2) * (1 + LambertW(-3*exp(-3/2)/2)))) / (4*Pi) = 0.28482428628793763109169664913715827647091747... - Vaclav Kotesovec, Dec 28 2021, updated May 14 2025

A269945 Triangle read by rows. Stirling set numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + k^2*T(n-1, k), for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 21, 14, 1, 0, 1, 85, 147, 30, 1, 0, 1, 341, 1408, 627, 55, 1, 0, 1, 1365, 13013, 11440, 2002, 91, 1, 0, 1, 5461, 118482, 196053, 61490, 5278, 140, 1, 0, 1, 21845, 1071799, 3255330, 1733303, 251498, 12138, 204, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2016

Keywords

Comments

Also known as central factorial numbers T(2*n, 2*k) (cf. A036969).
The analog for the Stirling cycle numbers is A269944.

Examples

			Triangle starts:
  [0] [1]
  [1] [0, 1]
  [2] [0, 1,   1]
  [3] [0, 1,   5,    1]
  [4] [0, 1,  21,   14,   1]
  [5] [0, 1,  85,  147,  30,  1]
  [6] [0, 1, 341, 1408, 627, 55, 1]
		

Crossrefs

Columns k=0..5 give A000007, A000012, A002450(n-1), A002451(n-3), A383838(n-4), A383840(n-5).
Variants are: A008957, A036969.
Cf. A007318 (order 0), A048993 (order 1), A269948 (order 3).
Cf. A000330 (subdiagonal), A002450 (column 2), A135920 (row sums), A269941, A269944 (Stirling cycle), A298851 (central terms).

Programs

  • Maple
    T := proc(n, k) option remember;
        `if`(n=k, 1,
        `if`(k<0 or k>n, 0,
         T(n-1, k-1) + k^2*T(n-1, k))) end:
    for n from 0 to 9 do seq(T(n, k), k=0..n) od;
    # Alternatively with the P-transform (cf. A269941):
    A269945_row := n -> PTrans(n, n->`if`(n=1, 1, 1/(n*(4*n-2))), (n, k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269945_row(n)), n=0..8);
    # Using the exponential generating function:
    egf := 1 + t^2*(cosh(2*sinh(t*x/2)/t));
    ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
    Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, 2*(n-k+1)), k = 0..n):
    seq(print(Trow(n)), n = 0..9);  # Peter Luschny, Feb 29 2024
  • Mathematica
    T[n_, n_] = 1; T[n_ /; n >= 0, k_] /; 0 <= k < n := T[n, k] = T[n - 1, k - 1] + k^2*T[n - 1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
    (* Jean-François Alcover, Nov 27 2017 *)
  • Sage
    # uses[PtransMatrix from A269941]
    stirset2 = lambda n: 1 if n == 1 else 1/(n*(4*n-2))
    norm = lambda n,k: (-1)^k*factorial(2*n)/factorial(2*k)
    M = PtransMatrix(7, stirset2, norm)
    for m in M: print(m)

Formula

T(n, k) = (-1)^k*((2*n)! / (2*k)!)*P[n, k](s(n)) where P is the P-transform and s(n) = 1/(n*(4*n-2)). The P-transform is defined in the link. Compare also the Sage and Maple implementations below.
T(n, 2) = (4^(n - 1) - 1)/3 for n >= 2 (cf. A002450).
T(n, n-1) = n*(n - 1)*(2*n - 1)/6 for n >= 1 (cf. A000330).
From Fabián Pereyra, Apr 25 2022: (Start)
T(n, k) = (1/(2*k)!)*Sum_{j=0..2*k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n).
T(n, k) = Sum_{j=2*k..2*n} (-k)^(2*n - j)*binomial(2*n, j)*Stirling2(j, 2*k).
T(n, k) = Sum_{j=0..2*n} (-1)^(j - k)*Stirling2(2*n - j, k)*Stirling2(j, k). (End)
T(n, k) = (2*n)! [t^(2*(n-k+1))] [x^(2*n)] (1 + t^2*(cosh(2*sinh(t*x/2)/t))). - Peter Luschny, Feb 29 2024

A345876 a(n) = Sum_{k=0..n} binomial(2*n, n-k) * k^n.

Original entry on oeis.org

1, 1, 8, 90, 1408, 28350, 697344, 20264244, 679313408, 25805186550, 1095482736640, 51397070440716, 2640925289349120, 147491783753286700, 8895880971425939456, 576279075821454657000, 39905347440408027725824, 2941534126495441574472870, 229966392623413457628168192
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[2*n, n-k]*k^n, {k, 0, n}], {n, 1, 20}]]
  • PARI
    a(n) = sum(k=0, n, binomial(2*n, n-k) * k^n); \\ Michel Marcus, Oct 03 2021

Formula

a(n) ~ 2^(2*n + 1/2) * r^(n+1) * n^n / (sqrt(1 + r^2) * exp(n) * (1 - r^2)^n), where r = 0.647918229029602749602061258113970414114660380467168496836586... is the positive root of the equation (1 + r) = (1 - r)*exp(1/r).

A299035 a(n) = [x^n] Product_{k=1..n} 1/(1-k^k*x).

Original entry on oeis.org

1, 1, 21, 23980, 4896624249, 327969374429859111, 11123496833223144303532943536, 273486179312859032380857823231575174373792, 6620886635410516590847876477644821623913997428738363459941
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^k*x), {k, 1, n}], {x, 0, n}], {n, 0, 10}] (* Vaclav Kotesovec, Feb 02 2018 *)

Formula

a(n) ~ n^(n^2). - Vaclav Kotesovec, Feb 02 2018

A299036 a(n) = [x^n] Product_{k=1..n} 1/(1-k!*x).

Original entry on oeis.org

1, 1, 7, 381, 502789, 33572762781, 175123095782787181, 99374457734129265819664221, 8158897372191288496224413025490409437, 124778468912108975502836576328262294089846582756189
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k!*x), {k, 1, n}], {x, 0, n}], {n, 0, 12}] (* Vaclav Kotesovec, Feb 02 2018 *)

Formula

From Vaclav Kotesovec, Feb 02 2018: (Start)
a(n) ~ (n!)^n.
a(n) ~ 2^(n/2) * Pi^(n/2) * n^(n*(2*n+1)/2) / exp(n^2 - 1/12). (End)

A351800 a(n) = [x^n] 1/Product_{j=1..n} (1 - j^3*x).

Original entry on oeis.org

1, 1, 73, 28800, 33120201, 83648533275, 393764054984212, 3103381708489548640, 37965284782803741391413, 681476650259874114533077575, 17184647574689079046814198039765, 588057239856779143071625300022102376, 26548105106818292578525347802793561068860
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2022

Keywords

Examples

			a(2) = (1*1)^3 + (1*2)^3 + (2*2)^3 = 1 + 8 + 64 = 73.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1,
          add(b(j, k-1)*j^3, j=1..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..15);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^3*x), {k, 1, n}], {x, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, May 17 2025 *)

Formula

a(n) = Sum_{p in {1..n}^n : p_i <= p_{i+1}} Product_{j=1..n} p_j^3.
a(n) = A098436(2n-1,n-1) = A269948(2n,n).
a(n) ~ c * d^n * n^(3*n - 1/2), where d = 1.54371040458513693750053812318801418996889528987425... and c = 0.71526493063554190404119140313248864511356727815244... - Vaclav Kotesovec, May 13 2025

A383853 a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(4*n).

Original entry on oeis.org

1, 1, 260, 556032, 4641176128, 106519579045760, 5472276566891956224, 549375993583284180705280, 97867116732573493470161420288, 28783909470167571938915053763592192, 13216052972619446942074113385580542689280, 9058922175695195359062480694771506779050213376
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[2*n, k]*(n-k)^(4*n), {k, 0, n}], {n, 1, 12}]] (* or *)
    Join[{1}, Table[Sum[Binomial[2*n, n+k]*k^(4*n), {k, 0, n}], {n, 1, 12}]]

Formula

a(n) = Sum_{k=0..n} binomial(2*n, n+k) * k^(4*n).
a(n) ~ 4^n * r^(4*n+1) * n^(4*n) / (sqrt(2 - r^2) * (1 - r^2)^n * exp(4*n)), where r = 0.9683644349844134852843167967986294187258222293516... is the root of the equation (1+r)/(1-r) = exp(4/r).

A384043 a(n) = [x^n] Product_{k=1..n} (1 + k^2*x) / (1 - k^2*x).

Original entry on oeis.org

1, 2, 50, 4188, 735600, 221302710, 101667388082, 66218673102680, 58048466179356672, 65901249246347377770, 94061755750395244537250, 164863945136411230998746612, 348110204753572939058548570000, 871547135491620353615820806025918, 2552918049709989779004770502542335650
Offset: 0

Views

Author

Vaclav Kotesovec, May 18 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k^2*x)/(1-k^2*x), {k, 1, n}], {x, 0, n}], {n, 0, 15}]

Formula

a(n) ~ c * d^n * n!^2 / n^(3/2), where d = 16.6871576653578743696262746377576281620174969944584774545888... and c = 0.1371163625236187865398447973928851799479072107076663329994...

A348081 a(n) = [x^n] Product_{k=1..2*n} 1/(1 - k^2 * x).

Original entry on oeis.org

1, 5, 627, 251498, 209609235, 298201326150, 646748606934510, 1986821811445598260, 8209989926930833199235, 43919039258570117113742270, 295300365118450495520630242042, 2437724587984574697761809904387340, 24239364659088896670563082403144467630
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^2*x), {k, 1, 2*n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2021 *)
  • PARI
    a(n) = polcoef(1/prod(k=1, 2*n, 1-k^2*x+x*O(x^n)), n);

Formula

a(n) ~ c * d^n * n!^2 / n^(3/2), where d = 78.52705817932973261726305432915417900827309581709564977985583533852704254... = (2+r)^6 / (r^2*(4+r)^2), where r = 0.329482909104375658581668801636329590897344... is the root of the equation 4+r = r*exp(6/(2+r)) and c = (2+r)/(Pi^(3/2)*sqrt(32 - 4*r*(4+r))) = 0.0815842039686253664272939415761688591712635596695065951780203519... - Vaclav Kotesovec, Oct 16 2021, updated May 17 2025
From Seiichi Manyama, May 13 2025: (Start)
a(n) = A036969(3*n,2*n) = A269945(3*n,2*n).
a(n) = (1/(4*n)!) * Sum_{k=0..4*n} (-1)^k * (2*n-k)^(6*n) * binomial(4*n,k).
a(n) = Sum_{k=0..2*n} (-2*n)^k * binomial(6*n,k) * Stirling2(6*n-k,4*n).
a(n) = Sum_{k=0..2*n} (-1)^k * Stirling2(2*n+k,2*n) * Stirling2(4*n-k,2*n). (End)
Showing 1-10 of 15 results. Next