cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A298851 a(n) = [x^n] Product_{k=1..n} 1/(1-k^2*x).

Original entry on oeis.org

1, 1, 21, 1408, 196053, 46587905, 16875270660, 8657594647800, 5974284925007685, 5336898188553325075, 5992171630749371157181, 8260051854943114812198756, 13714895317396748230146099660, 26998129079190909699998105620908, 62173633286588800021263427046090792
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(k, n) option remember; `if`(k=0, 1,
          add(b(k-1, j)*j^2, j=1..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^2*x), {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 02 2018 *)
    Join[{1}, Table[2*Sum[(-1)^(n-k) * Binomial[2*n, n-k] * k^(4*n), {k, 0, n}]/(2*n)!, {n, 1, 20}]] (* Vaclav Kotesovec, May 15 2025 *)
  • Maxima
    a(n):=if n<1 then 1 else 2*sum((n-k)^(4*n)/((2*n-k)!*k!*(-1)^k),k,0,n);
    makelist(a(n), n, 0, 20); /* Tani Akinari, Mar 09 2021 */

Formula

From Vaclav Kotesovec, Feb 02 2018, updated May 12 2025: (Start)
a(n) ~ c * d^n * n^(2*n - 1/2), where d = 1.774513671664430848697327843228386312953174421074432567764556466987... and c = 0.617929515483613293691991371141292259390065108300160936187723552669...
In closed form, a(n) ~ n^(2*n - 1/2) * r^(4*n + 1) / (sqrt(Pi*(2 - r^2)) * (r^2 - 1)^n * exp(2*n)), where r = 1.04438203376083348498401390634474776086902815721... is the root of the equation (1-r)/(1+r) = -exp(-4/r). (End)
a(n) = 2*(Sum_{k=0..n} (n-k)^(4*n)/((2*n-k)!*k!*(-1)^k)) for n>0. - Tani Akinari, Mar 09 2021
a(n) = A036969(2n,n) = A269945(2n,n). - Alois P. Heinz, Feb 19 2022
From Seiichi Manyama, May 12 2025: (Start)
a(n) = Sum_{k=0..2*n} (-n)^k * binomial(4*n,k) * Stirling2(4*n-k,2*n).
a(n) = Sum_{k=0..2*n} (-1)^k * Stirling2(k+n,n) * Stirling2(3*n-k,n). (End)

A383916 a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(3*n).

Original entry on oeis.org

1, 1, 68, 22770, 21143488, 41904629550, 151957171590144, 910666718387157732, 8390164064875701321728, 112583179357513548960803670, 2109812207969377622615440752640, 53397692462483465346961668429307836, 1775866125092261344436828225211633500160, 75857512919848315654302238627976991244564300
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[2*n, n-k]*k^(3*n), {k, 0, n}], {n, 1, 15}]]

Formula

a(n) ~ 2^(2*n + 1/2) * r^(3*n + 1) * n^(3*n) / (sqrt(3 - r^2) * exp(3*n) * (1 - r^2)^n), where r = 0.92488761106894648930384927930334708844525256369797556858640... is the root of the equation (1 + r)/(1 - r) = exp(3/r).

A383917 a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(5*n).

Original entry on oeis.org

1, 1, 1028, 14545530, 1127435263168, 309320354959336350, 232325928732003715014144, 403150958104730561230009068564, 1432706082674749593552098155989352448, 9528431104471630510834164178027409070527670, 110580781643902847320855308323644986008860441968640
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2025

Keywords

Comments

In general, for m>=1, Sum_{k=0..n} binomial(2*n, n-k) * k^(m*n) ~ 2^(2*n + 1/2) * r^(m*n + 1) * n^(m*n) / (sqrt(m + (2-m)*r^2) * exp(m*n) * (1 - r^2)^n), where r is the root of the equation (1 + r)/(1 - r) = exp(m/r).

Crossrefs

Cf. A032443 (m=0), A345876 (m=1), A209289/2 (m=2), A383916 (m=3), A383853 (m=4).

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[2*n, n-k]*k^(5*n), {k, 0, n}], {n, 1, 12}]]

Formula

a(n) ~ 2^(2*n + 1/2) * r^(5*n + 1) * n^(5*n) / (sqrt(5 - 3*r^2) * exp(5*n) * (1 - r^2)^n), where r = 0.98743428968604456152277643726278132237092161504496484119319... is the root of the equation (1 + r)/(1 - r) = exp(5/r).
Showing 1-3 of 3 results.