cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A350376 a(n) = [x^n] Product_{k=1..n} 1/(1 - k*x)^2.

Original entry on oeis.org

1, 2, 23, 480, 14627, 587580, 29331038, 1750923328, 121673580435, 9648709656300, 859874920598850, 85078769750118144, 9254316901029412110, 1097635452798476278232, 140986468651523106196060, 19496446561112852736019200, 2887977880849714395963280515
Offset: 0

Views

Author

Seiichi Manyama, Dec 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[Series[Product[1/(1 - k*x)^2, {k, 1, n}], {x, 0, n}], x, n]; Array[a, 17, 0] (* Amiram Eldar, Dec 28 2021 *)
    Table[Sum[StirlingS2[n + k, n]*StirlingS2[2*n - k, n], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 29 2021 *)
  • PARI
    a(n) = sum(k=0, n, stirling(n+k, n, 2)*stirling(2*n-k, n, 2));

Formula

a(n) = Sum_{k=0..n} Stirling2(n+k, n) * Stirling2(2*n-k, n).
a(n) ~ c * d^n * (n-1)!, where d = 27 / (4*LambertW(-3*exp(-3/2)/2)^2 * (3 + 2*LambertW(-3*exp(-3/2)/2))) = 9.858422414446789720857925020919293523149... and c = sqrt(3/(-LambertW(-3*exp(-3/2)/2) * (1 + LambertW(-3*exp(-3/2)/2)))) / (4*Pi) = 0.28482428628793763109169664913715827647091747... - Vaclav Kotesovec, Dec 28 2021, updated May 14 2025

A351764 a(n) = [x^n] Product_{k=1..n} (1 + k*x)^n / (1 - k*x)^n.

Original entry on oeis.org

1, 2, 72, 7848, 1728000, 641258850, 360403076376, 285818177146208, 304172586944446464, 418400927094822149970, 722587619114932445325000, 1530927286486636135080191736, 3904621941927926455303092180480, 11801667653769333351640692783069714
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + k*x)^n / (1 - k*x)^n, {k,1,n}], {x,0,n}], {n,0,20}]
  • PARI
    a(n) = my(x='x+O(x^(n+1))); polcoef(prod(k=1, n, (1+k*x)^n/ (1-k*x)^n), n); \\ Michel Marcus, Feb 19 2022

Formula

a(n) ~ exp(n + 1) * n^(2*n - 1/2) / sqrt(2*Pi).

A338328 G.f. A(x) satisfies: [x^n] (1 + n*x - A(x))^(2*n-1) = 0, for n > 0.

Original entry on oeis.org

1, 1, 8, 129, 3216, 108770, 4638624, 238318885, 14304161568, 981167968494, 75656236536880, 6474624435825546, 608726166485138400, 62351661805733365988, 6910034200942823999216, 823702177681649409615885, 105083183676401369775220288, 14284797856254053619382213974
Offset: 1

Views

Author

Paul D. Hanna, Oct 24 2020

Keywords

Comments

Compare to: [x^n] (1 + n*x - C(x))^(n+1) = 0, for n>0, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
Compare to: [x^n] (1 + n*x - W(x))^n = 0, for n>0, where W(x) = Sum_{n>=1} (n-1)^(n-1)*x^n/n! = 1 + x/LambertW(-x).

Examples

			G.f.: A(x) = x + x^2 + 8*x^3 + 129*x^4 + 3216*x^5 + 108770*x^6 + 4638624*x^7 + 238318885*x^8 + 14304161568*x^9 + 981167968494*x^10 + 75656236536880*x^11 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1 + n*x - A(x))^(2*n-1) begins:
n=0: [1, 1, 2, 11, 150, 3522, 116004, 4875971, 248249926, ...];
n=1: [1, 0, -1, -8, -129, -3216, -108770, -4638624, -238318885, ...];
n=2: [1, 3, 0, -29, -435, -10395, -344980, -14551710, -742232889, ...];
n=3: [1, 10, 35, 0, -995, -22108, -685040, -27845120, -1387317400, ...];
n=4: [1, 21, 182, 763, 0, -44352, -1308496, -49463691, -2359476623, ...];
n=5: [1, 36, 567, 5016, 24795, 0, -2460798, -90517248, -4024228311, ...];
n=6: [1, 55, 1364, 19987, 188111, 1076779, 0, -163739444, -7210725280, ...];
n=7: [1, 78, 2795, 60736, 886665, 8986692, 58632756, 0, -12708845682, ...];
n=8: [1, 105, 5130, 154475, 3196890, 47836926, 523400300, 3840855735, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1 + n*x - A(x))^(2*n-1) = 0, for n > 0.
ODD TERMS.
The odd terms seem to occur only at positions equal to powers of 2: a(1), a(2), a(4), a(8), a(16), ...; the odd terms begin: [1, 1, 129, 238318885, 823702177681649409615885, 1728309826852815676925583353579702599032084743126745454358749, ...].
RELATED SERIES.
1/(1 - A(x)) = 1 + x + 2*x^2 + 11*x^3 + 150*x^4 + 3522*x^5 + 116004*x^6 + 4875971*x^7 + 248249926*x^8 + 14807944838*x^9 + 1011137601996*x^10 + ...
Series_Reversion(A(x)) = x - x^2 - 6*x^3 - 94*x^4 - 2404*x^5 - 83808*x^6 - 3667808*x^7 - 192327976*x^8 - 11726343040*x^9 - 814059155216*x^10 - ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],m=1); for(i=1,n, A=concat(A,0);
    m=#A; A[#A] = polcoeff( (1 + m*x - x*Ser(A))^(2*m-1), m)/(2*m-1) );A[n]}
    for(n=1,30,print1(a(n),", "))

Formula

a(n) is odd iff n is a power of 2 (conjecture).
a(n) = 2 (mod 4) iff n is twice the sum of two distinct powers of 2 (conjecture).
a(n) ~ c * d^n * n! / n^2, where d = (1+r) / ((-1 + exp(r + LambertW(-1, -exp(-r)*r))) * LambertW(-exp(-1-r)*(1+r))) = 8.406107401279769476199925123910168..., r = 0.7545302104650497245839827141610818561001159135034... is the root of the equation r*(1 + r + LambertW(-exp(-1 - r)*(1 + r))) = -(1 + r)*(r + LambertW(-1, -exp(-r)*r)) and c = 0.0183535737... - Vaclav Kotesovec, Oct 25 2020, updated Dec 29 2021

A383900 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of Product_{j=0..k} (1 + j*x)/(1 - j*x).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 2, 0, 1, 12, 18, 2, 0, 1, 20, 72, 42, 2, 0, 1, 30, 200, 312, 90, 2, 0, 1, 42, 450, 1400, 1152, 186, 2, 0, 1, 56, 882, 4650, 8000, 3912, 378, 2, 0, 1, 72, 1568, 12642, 38250, 40520, 12672, 762, 2, 0, 1, 90, 2592, 29792, 142002, 271770, 190400, 39912, 1530, 2, 0
Offset: 0

Views

Author

Seiichi Manyama, May 14 2025

Keywords

Examples

			Square array begins:
  1, 1,   1,    1,     1,      1, ...
  0, 2,   6,   12,    20,     30, ...
  0, 2,  18,   72,   200,    450, ...
  0, 2,  42,  312,  1400,   4650, ...
  0, 2,  90, 1152,  8000,  38250, ...
  0, 2, 186, 3912, 40520, 271770, ...
		

Crossrefs

Columns k=0..4 give A000007, A040000, A068293(n+1), A383910, A383911.
Main diagonal gives A350366.
A(n,n-1) gives A383767.

Programs

  • PARI
    a(n, k) = sum(j=0, k, abs(stirling(k+1, j+1, 1))*stirling(j+n, k, 2));

Formula

A(n,k) = Sum_{j=0..k} |Stirling1(k+1,j+1)| * Stirling2(j+n,k).

A384043 a(n) = [x^n] Product_{k=1..n} (1 + k^2*x) / (1 - k^2*x).

Original entry on oeis.org

1, 2, 50, 4188, 735600, 221302710, 101667388082, 66218673102680, 58048466179356672, 65901249246347377770, 94061755750395244537250, 164863945136411230998746612, 348110204753572939058548570000, 871547135491620353615820806025918, 2552918049709989779004770502542335650
Offset: 0

Views

Author

Vaclav Kotesovec, May 18 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k^2*x)/(1-k^2*x), {k, 1, n}], {x, 0, n}], {n, 0, 15}]

Formula

a(n) ~ c * d^n * n!^2 / n^(3/2), where d = 16.6871576653578743696262746377576281620174969944584774545888... and c = 0.1371163625236187865398447973928851799479072107076663329994...

A338408 E.g.f. A(x) satisfies: [x^n] (1 + n*x - A(x))^(2*n) = 0, for n > 0.

Original entry on oeis.org

1, 3, 70, 4515, 567576, 116389295, 35111089728, 14574226069095, 7944376570503040, 5494208894263886139, 4694820247236686649600, 4853712224007783889422923, 5968210130160831707746406400, 8605241830169634366425696447655, 14375558607944255605507888571539456
Offset: 1

Views

Author

Paul D. Hanna, Oct 24 2020

Keywords

Comments

Compare to: [x^n] (1 + n*x - W(x))^n = 0, for n>0, where W(x) = Sum_{n>=1} (n-1)^(n-1)*x^n/n! = 1 + x/LambertW(-x).
Compare to: [x^n] (1 + n*x - C(x))^(n+1) = 0, for n>0, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

Examples

			E.g.f.: A(x) = x + 3*x^2/2! + 70*x^3/3! + 4515*x^4/4! + 567576*x^5/5! + 116389295*x^6/6! + 35111089728*x^7/7! + 14574226069095*x^8/8! + 7944376570503040*x^9/9! + 5494208894263886139*x^10/10! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in (1 + n*x - A(x))^(2*n) begins:
n=0: [1, 0, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 0, -6, -140, -8976, -1130952, -232274240, -70128541380, ...];
n=2: [1, 4, 0, -364, -21504, -2530284, -504753152, -149907313980, ...];
n=3: [1, 12, 102, 0, -45960, -5063916, -928551600, -263868802728, ...];
n=4: [1, 24, 480, 7000, 0, -9924168, -1748523008, -457324971720, ...];
n=5: [1, 40, 1410, 42140, 939360, 0, -3259331360, -836926230780, ...];
n=6: [1, 60, 3264, 158220, 6595584, 208807788, 0, -1509806731620, ...];
n=7: [1, 84, 6510, 460936, 29355816, 1626947196, 69489455728, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1 + n*x - A(x))^(2*n) = 0, for n > 0.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],m=1); for(i=1,n, A=concat(A,0); m=#A; A[#A] = polcoeff( (1 + m*x - x*Ser(A))^(2*m), m)/(2*m) ); n!*A[n]}
    for(n=1,30,print1(a(n),", "))

Formula

a(n) ~ c * d^n * n!^2 / n^2, where d = (1+r) / ((-1 + exp(r + LambertW(-1, -exp(-r)*r))) * LambertW(-exp(-1-r)*(1+r))) = 8.406107401279769476199925123910168..., r = 0.7545302104650497245839827141610818561001159135034... is the root of the equation r*(1 + r + LambertW(-exp(-1 - r)*(1 + r))) = -(1 + r)*(r + LambertW(-1, -exp(-r)*r)) and c = 0.031468237083... - Vaclav Kotesovec, Aug 12 2021, updated Dec 29 2021

A383767 a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)/(1 - k*x).

Original entry on oeis.org

1, 0, 2, 42, 1152, 40520, 1751850, 90087522, 5376546560, 365487900192, 27886922161650, 2360357986720250, 219495753481590432, 22246783602163580616, 2440974108105319141082, 288270640787372104920450, 36459004369727317927680000, 4916744437454382604092493952, 704282170015570676249171941218
Offset: 0

Views

Author

Seiichi Manyama, May 14 2025

Keywords

Crossrefs

Cf. A350366.

Programs

  • PARI
    a(n) = polcoef(prod(k=0, n-1, (1+k*x)/(1-k*x)+x*O(x^n)), n);

Formula

a(n) = Sum_{k=0..n} |Stirling1(n,k)| * Stirling2(k+n-1,n-1) for n > 0.

A384044 a(n) = [x^n] Product_{k=1..n} (1 + k^3*x) / (1 - k^3*x).

Original entry on oeis.org

1, 2, 162, 75672, 104312000, 317309605650, 1803288012589602, 17180843554017736544, 254292459616733559570432, 5525508321588276184345621650, 168733575675064578625834983478850, 6994229599670887851052241626545021912, 382562895157136117988572795915676719695680
Offset: 0

Views

Author

Vaclav Kotesovec, May 18 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k^3*x)/(1-k^3*x), {k, 1, n}], {x, 0, n}], {n, 0, 12}]

Formula

a(n) ~ c * d^n * n!^3 / n^2, where d = 37.604795475701444958019770120055586495991039059348094619704... and c = 0.063895861310548119570865800164582089372152350471371583403...

A384086 a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^2.

Original entry on oeis.org

1, 4, 72, 2352, 112000, 7023540, 546991704, 50923706176, 5517464159232, 682067031126660, 94744306830613000, 14610279918692775504, 2476682373835289303424, 457771369968515293229812, 91624876032673265663215800, 19743379886572250897986694400, 4556982707091255612929249419264
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k*x)^2/(1-k*x)^2, {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ c * d^n * n! / n, where d = 15.357995623209995052090556511543938190953157405669200... and c = 0.3746298100044008083790505105262276548713201624206421...

A384087 a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^3.

Original entry on oeis.org

1, 6, 162, 7848, 552000, 51035310, 5853933666, 802178739936, 127879052859648, 23252775004089990, 4750089647035004250, 1077069265550569663416, 268437124701985949614944, 72940650531961450912140558, 21461129870889481564510048050, 6797577340761206051865208521600, 2306127185536355501260494657447936
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k*x)^3/(1-k*x)^3, {k, 1, n}], {x, 0, n}], {n, 0, 16}]

Formula

a(n) ~ c * d^n * n! / n, where d = 22.56625698335414867480351407039325848948214595770919713967057... and c = 0.403760467212667768540403611728406212428403946576093482938996...
Showing 1-10 of 12 results. Next