cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384086 a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^2.

Original entry on oeis.org

1, 4, 72, 2352, 112000, 7023540, 546991704, 50923706176, 5517464159232, 682067031126660, 94744306830613000, 14610279918692775504, 2476682373835289303424, 457771369968515293229812, 91624876032673265663215800, 19743379886572250897986694400, 4556982707091255612929249419264
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k*x)^2/(1-k*x)^2, {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ c * d^n * n! / n, where d = 15.357995623209995052090556511543938190953157405669200... and c = 0.3746298100044008083790505105262276548713201624206421...

A384088 a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^4.

Original entry on oeis.org

1, 8, 288, 18528, 1728000, 211687080, 32159822688, 5835397918336, 1231573968949248, 296447550279133320, 80158746419240852000, 24057027574081163030688, 7935414295799696292767232, 2853706409310576479751168168, 1111199574070700473937862463200, 465782420445680979210397280524800
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k*x)^4/(1-k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 16}]

Formula

a(n) ~ c * d^n * n! / n, where d = 29.85915450232266280267400661836716424701025678171993103713550551... and c = 0.415660498916272367812330643610916948922178337726778287649763513...
Showing 1-2 of 2 results.