cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A007820 Stirling numbers of second kind S(2n,n).

Original entry on oeis.org

1, 1, 7, 90, 1701, 42525, 1323652, 49329280, 2141764053, 106175395755, 5917584964655, 366282500870286, 24930204590758260, 1850568574253550060, 148782988064375309400, 12879868072770626040000, 1194461517469807833782085, 118144018577011378596484455
Offset: 0

Views

Author

kemp(AT)sads.informatik.uni-frankfurt.de (Rainer Kemp)

Keywords

Comments

Chan and Manna prove that a(n) is odd if and only if n is in A003714. - Jason Kimberley, Sep 14 2009
The number of ways to partition a set of 2*n elements into n disjoint subsets. - Vladimir Reshetnikov, Oct 10 2016
Conjecture: a(2*n+1) is divisible by (2*n + 1)^2. - Peter Bala, Mar 30 2025

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 90*x^3 + 1701*x^4 + 42525*x^5 +...,
where A(x) = 1 + 1^2*x*exp(-1*x) + 2^4*exp(-2^2*x)*x^2/2! + 3^6*exp(-3^2*x)*x^3/3! + 4^8*exp(-4^2*x)*x^4/4! + 5^10*exp(-5^2*x)*x^5/5! + ... - _Paul D. Hanna_, Oct 17 2012
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.

Crossrefs

Programs

  • Maple
    A007820 := proc(n) Stirling2(2*n,n) ; end proc:
    seq(A007820(n),n=0..20) ; # R. J. Mathar, Mar 15 2011
  • Mathematica
    Table[StirlingS2[2n, n], {n, 1, 12}] (* Emanuele Munarini, Mar 12 2011 *)
  • Maxima
    makelist(stirling2(2*n,n),n,0,12); /* Emanuele Munarini, Mar 12 2011 */
    
  • PARI
    a(n)=stirling(2*n,n,2); /* Joerg Arndt, Jul 01 2011 */
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), n)} \\ Paul D. Hanna, Oct 17 2012
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,(m^2)^m*exp(-m^2*x+x*O(x^n))*x^m/m!),n)} \\ Paul D. Hanna, Oct 17 2012
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A007820(n): return stirling(n<<1,n) # Chai Wah Wu, Jun 09 2025
  • Sage
    [stirling_number2(2*i,i) for i in range(1,20)] # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n) = A048993(2n,n). - R. J. Mathar, Mar 15 2011
Asymptotic: a(n) ~ (4*n/(e*z*(2-z)))^n/sqrt(2*Pi*n*(z-1)), where z = A256500 = 1.59362426... is a root of the equation exp(z)*(2-z)=2. - Vaclav Kotesovec, May 30 2011
a(n) = 1/n! * Sum_{k = 0..n} binomial(n,k)*(-1)^k*(n-k)^(2*n). - Emanuele Munarini, Jul 01 2011
a(n) = [x^n] 1 / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Oct 17 2012
O.g.f.: Sum_{n>=1} (n^2)^n * exp(-n^2*x) * x^n/n! = Sum_{n>=1} S2(2*n,n)*x^n. - Paul D. Hanna, Oct 17 2012
G.f.: Sum_{n > 0} (a(n)*n!/(2*n)!)*x^n = x*B'(x)/B(x)-1, where B(x) satisfies B(x)^2 = x*(exp(B(x))-1). - Vladimir Kruchinin, Mar 13 2013
a(n) = Sum_{j = 0..n} (-1)^(n-j)*n^j*binomial(2*n,j)*stirling2(2*n-j,n). - Vladimir Kruchinin, Jun 14 2013

Extensions

Typo in Mathematica program fixed by Vincenzo Librandi, May 04 2013
a(0)=1 prepended by Alois P. Heinz, Feb 01 2018

A129256 Central coefficient of Product_{k=0..n} (1+k*x)^2.

Original entry on oeis.org

1, 2, 13, 144, 2273, 46710, 1184153, 35733376, 1251320145, 49893169050, 2232012515445, 110722046632560, 6032418472347265, 358103844593876654, 23007314730623658225, 1590611390957425536000, 117745011140615270168865
Offset: 0

Views

Author

Paul D. Hanna, Apr 06 2007

Keywords

Examples

			This sequence equals the central terms of the triangle in which the g.f. of row n is (1+x)^2*(1+2x)^2*(1+3x)^2*...*(1+n*x)^2, as illustrated by:
  (1);
   1, (2),  1;
   1,  6, (13),  12,     4;
   1, 12,  58, (144),  193,    132,      36;
   1, 20, 170,  800, (2273),  3980,    4180,   2400,    576;
   1, 30, 395, 3000, 14523, (46710), 100805, 143700, 129076, 65760, 14400;
  ...
		

Crossrefs

Cf. A008275 (Stirling1 numbers), A187235, A238261, A246117, A254882, A350376.

Programs

  • Mathematica
    Flatten[{1,Table[Coefficient[Expand[Product[(1+k*x),{k,0,n}]^2],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
  • PARI
    a(n)=polcoeff(prod(k=0,n,1+k*x)^2,n)
    
  • PARI
    {a(n)=(-1)^n*sum(k=0,n,stirling(n+1,k+1,1)*stirling(n+1,n-k+1,1))} \\ Paul D. Hanna, Jul 16 2009

Formula

a(n) = (-1)^n*Sum_{k=0..n} Stirling1(n+1,k+1)*Stirling1(n+1,n-k+1). - Paul D. Hanna, Jul 16 2009
a(n) ~ c * d^n * (n-1)!, where d = A238261 = -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)) = 4.910814964568255..., c = (-LambertW(-1, -exp(-1/2)/2))^(3/2)/(sqrt(-1 - LambertW(-1, -exp(-1/2)/2))*Pi) = 0.851946112888790982829578047527831525434714038256... . - Vaclav Kotesovec, Feb 10 2015, updated May 14 2025

A383862 a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^3.

Original entry on oeis.org

1, 3, 48, 1386, 58278, 3225915, 221726711, 18216234288, 1741626159966, 189977753488050, 23285057201978520, 3168272346322892094, 473878954663846060735, 77281168674525142984020, 13647787698908399220563400, 2594721838238358445753776000, 528401900314147344955336365822
Offset: 0

Views

Author

Seiichi Manyama, May 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x)^3, {k, 1, n}], {x, 0, n}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
    (* or *)
    Table[Sum[StirlingS2[i + n, n] * StirlingS2[j + n, n] * StirlingS2[2*n - i - j, n], {i, 0, n}, {j, 0, n-i}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
  • PARI
    a(n) = sum(i=0, n, sum(j=0, n-i, stirling(i+n, n, 2)*stirling(j+n, n, 2)*stirling(2*n-i-j, n, 2)));

Formula

a(n) = Sum_{i, j, k>=0 and i+j+k=n} Stirling2(i+n,n) * Stirling2(j+n,n) * Stirling2(k+n,n).
a(n) ~ 2^(8*n + 3/2) * n^(n - 1/2) / (sqrt(Pi*(1-w)) * exp(n) * 3^(3*n + 3/2) * (4 - 3*w)^n * w^(3*n + 1)), where w = -LambertW(-4*exp(-4/3)/3) = 0.727473355414332993149219573314579663... - Vaclav Kotesovec, May 18 2025

A384060 a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^4.

Original entry on oeis.org

1, 4, 82, 3024, 162154, 11438280, 1001454024, 104777127616, 12755141675754, 1771354690734420, 276386332002204450, 47870892086756660064, 9113932961179205496744, 1891845220489637114281216, 425240943851497448491619600, 102899751348092720847554016000
Offset: 0

Views

Author

Vaclav Kotesovec, May 18 2025

Keywords

Comments

In general, for m>=1, [x^n] Product_{k=0..n} 1/(1 - k*x)^m ~ (m+1)^((m+1)*n + (m-1)/2) * n^(n - 1/2) / (sqrt(2*Pi*(1-w)) * exp(n) * (m+1-m*w)^n * m^(m*(n + 1/2)) * w^(m*n + (m-1)/2)), where w = -LambertW(-(m+1)*exp(-(m+1)/m)/m).
The general formula is valid even for m=n, where after modifications we get the formula for A351508.

Crossrefs

Cf. A007820 (m=1), A350376 (m=2), A383862 (m=3), A351508 (m=n).
Cf. A384031.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 15}]

Formula

a(n) = Sum_{i, j, k, l>=0 and i+j+k+l=n} Stirling2(i+n,n) * Stirling2(j+n,n) * Stirling2(k+n,n) * Stirling2(l+n,n). - Seiichi Manyama, May 18 2025
a(n) ~ 5^(5*n + 3/2) * n^(n - 1/2) / (sqrt(Pi*(1-w)) * 2^(8*n + 9/2) * exp(n) * (5 - 4*w)^n * w^(4*n + 3/2)), where w = -LambertW(-5*exp(-5/4)/4) = 0.7857872456211833502961937693700363613539172187... - Vaclav Kotesovec, May 18 2025

A351508 a(n) = [x^n] Product_{k=1..n} 1/(1 - k*x)^n.

Original entry on oeis.org

1, 1, 23, 1386, 162154, 31354800, 9078595483, 3682549444112, 1994756395887972, 1391788744738729470, 1216130179327397765925, 1301126343608005909401330, 1673298722590019165433540916, 2547164111922284803722749855516
Offset: 0

Views

Author

Seiichi Manyama, Feb 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k*x)^n, {k,1,n}], {x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 18 2022 *)
  • PARI
    a(n) = polcoef(1/prod(k=1, n, 1-k*x+x*O(x^n))^n, n);

Formula

a(n) ~ exp(n + 5/3) * n^(2*n - 1/2) / (sqrt(Pi) * 2^(n + 1/2)). - Vaclav Kotesovec, Feb 18 2022
a(n) = Sum_{x_1, x_2,..., x_n >= 0 and x_1 + x_2 + ... + x_n = n} Product_{k=1..n} Stirling2(x_k + n,n). - Seiichi Manyama, May 18 2025

A383843 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/Product_{j=0..k} (1 - j*x)^2.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 23, 4, 0, 1, 20, 86, 72, 5, 0, 1, 30, 230, 480, 201, 6, 0, 1, 42, 505, 2000, 2307, 522, 7, 0, 1, 56, 973, 6300, 14627, 10044, 1291, 8, 0, 1, 72, 1708, 16464, 65002, 95060, 40792, 3084, 9, 0, 1, 90, 2796, 37632, 227542, 587580, 567240, 157440, 7181, 10, 0
Offset: 0

Views

Author

Seiichi Manyama, May 12 2025

Keywords

Examples

			Square array begins:
  1, 1,    1,     1,      1,       1,        1, ...
  0, 2,    6,    12,     20,      30,       42, ...
  0, 3,   23,    86,    230,     505,      973, ...
  0, 4,   72,   480,   2000,    6300,    16464, ...
  0, 5,  201,  2307,  14627,   65002,   227542, ...
  0, 6,  522, 10044,  95060,  587580,  2725380, ...
  0, 7, 1291, 40792, 567240, 4817990, 29331038, ...
		

Crossrefs

Columns k=0..4 give A000007, A000027(n+1), A045618, A383841, A383842.
Main diagonal gives A350376.
A(n,n-1) gives A383880.

Programs

  • PARI
    a(n, k) = sum(j=0, n, stirling(j+k, k, 2)*stirling(n-j+k, k, 2));

Formula

A(n,k) = Sum_{j=0..n} Stirling2(j+k,k) * Stirling2(n-j+k,k).

A383880 a(n) = [x^n] 1/Product_{k=0..n-1} (1 - k*x)^2.

Original entry on oeis.org

1, 0, 3, 72, 2307, 95060, 4817990, 290523576, 20333487251, 1621036680120, 145057745669850, 14399349523416000, 1570425994090538574, 186674663305762642296, 24021930409036829669036, 3327140929951823209016400, 493515678917684006649451651, 78054583374364036172432641200
Offset: 0

Views

Author

Seiichi Manyama, May 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[StirlingS2[n + k - 1, n - 1]*StirlingS2[2*n - k - 1, n - 1], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 14 2025 *)
  • PARI
    a(n) = polcoef(1/prod(k=0, n-1, 1-k*x+x*O(x^n))^2, n);

Formula

a(n) = Sum_{k=0..n} Stirling2(n+k-1,n-1) * Stirling2(2*n-k-1,n-1) for n > 0.
a(n) ~ 3^(3*n - 3/2) * n^(n - 1/2) / (sqrt(Pi*(1-w)) * 2^(2*n - 1/2) * exp(n) * (3 - 2*w)^n * w^(2*n - 3/2)), where w = -LambertW(-3*exp(-3/2)/2). - Vaclav Kotesovec, May 14 2025

A383883 a(n) = [x^n] 1/((1 - n*x) * Product_{k=0..n-1} (1 - k*x)^2).

Original entry on oeis.org

1, 1, 11, 222, 6627, 262570, 12978758, 769079444, 53138842515, 4194648739710, 372421403333850, 36733739199892020, 3985122473105099406, 471598870326072262644, 60456151456891375730860, 8345905345383943433713800, 1234395864446065862689721475, 194738649118647202909304657910
Offset: 0

Views

Author

Seiichi Manyama, May 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[StirlingS2[n + k - 1, n - 1]*StirlingS2[2*n - k, n], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 14 2025 *)
  • PARI
    a(n) = polcoef(1/((1-n*x)*prod(k=0, n-1, 1-k*x+x*O(x^n))^2), n);

Formula

a(n) = Sum_{k=0..n} Stirling2(n+k-1,n-1) * Stirling2(2*n-k,n) for n > 0.
a(n) = A287532(n,n).
a(n) ~ 3^(3*n - 1/2) * n^(n - 1/2) / (sqrt(Pi*(1-w)) * 2^(2*n + 1/2) * exp(n) * (3 - 2*w)^n * w^(2*n - 1/2)), where w = -LambertW(-3*exp(-3/2)/2). - Vaclav Kotesovec, May 14 2025

A384086 a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^2.

Original entry on oeis.org

1, 4, 72, 2352, 112000, 7023540, 546991704, 50923706176, 5517464159232, 682067031126660, 94744306830613000, 14610279918692775504, 2476682373835289303424, 457771369968515293229812, 91624876032673265663215800, 19743379886572250897986694400, 4556982707091255612929249419264
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k*x)^2/(1-k*x)^2, {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ c * d^n * n! / n, where d = 15.357995623209995052090556511543938190953157405669200... and c = 0.3746298100044008083790505105262276548713201624206421...

A384206 a(n) = [x^(3*n)] Product_{k=0..n} 1/(1 - k*x)^2.

Original entry on oeis.org

1, 4, 1291, 2107596, 9822847079, 99559982844000, 1870441451243408425, 58630795546429054116336, 2846132741588198942785663319, 202389763024999232451527049522000, 20194222519959431156536932169706390700, 2731878423936456763814384150978735866605108
Offset: 0

Views

Author

Vaclav Kotesovec, May 22 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x)^2, {k, 0, n}], {x, 0, 3*n}], {n, 0, 15}]
    Table[Sum[StirlingS2[i+n, n] * StirlingS2[4*n-i, n], {i, 0, 3*n}], {n, 0, 15}]

Formula

a(n) = Sum_{k=0..3*n} Stirling2(n+k, n) * Stirling2(4*n-k, n).
a(n) ~ 5^(5*n + 1/2) * n^(3*n - 1/2) / (sqrt(Pi*(1-w)) * 2^(2*n + 3/2) * exp(3*n) * w^(2*n + 1/2) * (5 - 2*w)^(3*n)), where w = -LambertW(-5*exp(-5/2)/2) = 0.268388115976977211740078521072609338...
Showing 1-10 of 11 results. Next