A007820
Stirling numbers of second kind S(2n,n).
Original entry on oeis.org
1, 1, 7, 90, 1701, 42525, 1323652, 49329280, 2141764053, 106175395755, 5917584964655, 366282500870286, 24930204590758260, 1850568574253550060, 148782988064375309400, 12879868072770626040000, 1194461517469807833782085, 118144018577011378596484455
Offset: 0
kemp(AT)sads.informatik.uni-frankfurt.de (Rainer Kemp)
G.f.: A(x) = 1 + x + 7*x^2 + 90*x^3 + 1701*x^4 + 42525*x^5 +...,
where A(x) = 1 + 1^2*x*exp(-1*x) + 2^4*exp(-2^2*x)*x^2/2! + 3^6*exp(-3^2*x)*x^3/3! + 4^8*exp(-4^2*x)*x^4/4! + 5^10*exp(-5^2*x)*x^5/5! + ... - _Paul D. Hanna_, Oct 17 2012
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- Alois P. Heinz, Table of n, a(n) for n = 0..345 (terms n = 1..200 from Vincenzo Librandi)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- O-Y. Chan and D. V. Manna, Divisibility properties of Stirling numbers of the second kind [From _Jason Kimberley_, Sep 14 2009]
-
A007820 := proc(n) Stirling2(2*n,n) ; end proc:
seq(A007820(n),n=0..20) ; # R. J. Mathar, Mar 15 2011
-
Table[StirlingS2[2n, n], {n, 1, 12}] (* Emanuele Munarini, Mar 12 2011 *)
-
makelist(stirling2(2*n,n),n,0,12); /* Emanuele Munarini, Mar 12 2011 */
-
a(n)=stirling(2*n,n,2); /* Joerg Arndt, Jul 01 2011 */
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), n)} \\ Paul D. Hanna, Oct 17 2012
-
{a(n)=polcoeff(sum(m=1,n,(m^2)^m*exp(-m^2*x+x*O(x^n))*x^m/m!),n)} \\ Paul D. Hanna, Oct 17 2012
-
from sympy.functions.combinatorial.numbers import stirling
def A007820(n): return stirling(n<<1,n) # Chai Wah Wu, Jun 09 2025
-
[stirling_number2(2*i,i) for i in range(1,20)] # Zerinvary Lajos, Jun 26 2008
A129256
Central coefficient of Product_{k=0..n} (1+k*x)^2.
Original entry on oeis.org
1, 2, 13, 144, 2273, 46710, 1184153, 35733376, 1251320145, 49893169050, 2232012515445, 110722046632560, 6032418472347265, 358103844593876654, 23007314730623658225, 1590611390957425536000, 117745011140615270168865
Offset: 0
This sequence equals the central terms of the triangle in which the g.f. of row n is (1+x)^2*(1+2x)^2*(1+3x)^2*...*(1+n*x)^2, as illustrated by:
(1);
1, (2), 1;
1, 6, (13), 12, 4;
1, 12, 58, (144), 193, 132, 36;
1, 20, 170, 800, (2273), 3980, 4180, 2400, 576;
1, 30, 395, 3000, 14523, (46710), 100805, 143700, 129076, 65760, 14400;
...
-
Flatten[{1,Table[Coefficient[Expand[Product[(1+k*x),{k,0,n}]^2],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
-
a(n)=polcoeff(prod(k=0,n,1+k*x)^2,n)
-
{a(n)=(-1)^n*sum(k=0,n,stirling(n+1,k+1,1)*stirling(n+1,n-k+1,1))} \\ Paul D. Hanna, Jul 16 2009
A383862
a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^3.
Original entry on oeis.org
1, 3, 48, 1386, 58278, 3225915, 221726711, 18216234288, 1741626159966, 189977753488050, 23285057201978520, 3168272346322892094, 473878954663846060735, 77281168674525142984020, 13647787698908399220563400, 2594721838238358445753776000, 528401900314147344955336365822
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1-k*x)^3, {k, 1, n}], {x, 0, n}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
(* or *)
Table[Sum[StirlingS2[i + n, n] * StirlingS2[j + n, n] * StirlingS2[2*n - i - j, n], {i, 0, n}, {j, 0, n-i}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
-
a(n) = sum(i=0, n, sum(j=0, n-i, stirling(i+n, n, 2)*stirling(j+n, n, 2)*stirling(2*n-i-j, n, 2)));
A384060
a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^4.
Original entry on oeis.org
1, 4, 82, 3024, 162154, 11438280, 1001454024, 104777127616, 12755141675754, 1771354690734420, 276386332002204450, 47870892086756660064, 9113932961179205496744, 1891845220489637114281216, 425240943851497448491619600, 102899751348092720847554016000
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1-k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 15}]
A351508
a(n) = [x^n] Product_{k=1..n} 1/(1 - k*x)^n.
Original entry on oeis.org
1, 1, 23, 1386, 162154, 31354800, 9078595483, 3682549444112, 1994756395887972, 1391788744738729470, 1216130179327397765925, 1301126343608005909401330, 1673298722590019165433540916, 2547164111922284803722749855516
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 - k*x)^n, {k,1,n}], {x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 18 2022 *)
-
a(n) = polcoef(1/prod(k=1, n, 1-k*x+x*O(x^n))^n, n);
A383843
Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/Product_{j=0..k} (1 - j*x)^2.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 23, 4, 0, 1, 20, 86, 72, 5, 0, 1, 30, 230, 480, 201, 6, 0, 1, 42, 505, 2000, 2307, 522, 7, 0, 1, 56, 973, 6300, 14627, 10044, 1291, 8, 0, 1, 72, 1708, 16464, 65002, 95060, 40792, 3084, 9, 0, 1, 90, 2796, 37632, 227542, 587580, 567240, 157440, 7181, 10, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 6, 12, 20, 30, 42, ...
0, 3, 23, 86, 230, 505, 973, ...
0, 4, 72, 480, 2000, 6300, 16464, ...
0, 5, 201, 2307, 14627, 65002, 227542, ...
0, 6, 522, 10044, 95060, 587580, 2725380, ...
0, 7, 1291, 40792, 567240, 4817990, 29331038, ...
-
a(n, k) = sum(j=0, n, stirling(j+k, k, 2)*stirling(n-j+k, k, 2));
A383880
a(n) = [x^n] 1/Product_{k=0..n-1} (1 - k*x)^2.
Original entry on oeis.org
1, 0, 3, 72, 2307, 95060, 4817990, 290523576, 20333487251, 1621036680120, 145057745669850, 14399349523416000, 1570425994090538574, 186674663305762642296, 24021930409036829669036, 3327140929951823209016400, 493515678917684006649451651, 78054583374364036172432641200
Offset: 0
-
Join[{1}, Table[Sum[StirlingS2[n + k - 1, n - 1]*StirlingS2[2*n - k - 1, n - 1], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 14 2025 *)
-
a(n) = polcoef(1/prod(k=0, n-1, 1-k*x+x*O(x^n))^2, n);
A383883
a(n) = [x^n] 1/((1 - n*x) * Product_{k=0..n-1} (1 - k*x)^2).
Original entry on oeis.org
1, 1, 11, 222, 6627, 262570, 12978758, 769079444, 53138842515, 4194648739710, 372421403333850, 36733739199892020, 3985122473105099406, 471598870326072262644, 60456151456891375730860, 8345905345383943433713800, 1234395864446065862689721475, 194738649118647202909304657910
Offset: 0
-
Join[{1}, Table[Sum[StirlingS2[n + k - 1, n - 1]*StirlingS2[2*n - k, n], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 14 2025 *)
-
a(n) = polcoef(1/((1-n*x)*prod(k=0, n-1, 1-k*x+x*O(x^n))^2), n);
A384086
a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^2.
Original entry on oeis.org
1, 4, 72, 2352, 112000, 7023540, 546991704, 50923706176, 5517464159232, 682067031126660, 94744306830613000, 14610279918692775504, 2476682373835289303424, 457771369968515293229812, 91624876032673265663215800, 19743379886572250897986694400, 4556982707091255612929249419264
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k*x)^2/(1-k*x)^2, {k, 1, n}], {x, 0, n}], {n, 0, 20}]
A384206
a(n) = [x^(3*n)] Product_{k=0..n} 1/(1 - k*x)^2.
Original entry on oeis.org
1, 4, 1291, 2107596, 9822847079, 99559982844000, 1870441451243408425, 58630795546429054116336, 2846132741588198942785663319, 202389763024999232451527049522000, 20194222519959431156536932169706390700, 2731878423936456763814384150978735866605108
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1-k*x)^2, {k, 0, n}], {x, 0, 3*n}], {n, 0, 15}]
Table[Sum[StirlingS2[i+n, n] * StirlingS2[4*n-i, n], {i, 0, 3*n}], {n, 0, 15}]
Showing 1-10 of 11 results.
Comments