cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A007820 Stirling numbers of second kind S(2n,n).

Original entry on oeis.org

1, 1, 7, 90, 1701, 42525, 1323652, 49329280, 2141764053, 106175395755, 5917584964655, 366282500870286, 24930204590758260, 1850568574253550060, 148782988064375309400, 12879868072770626040000, 1194461517469807833782085, 118144018577011378596484455
Offset: 0

Views

Author

kemp(AT)sads.informatik.uni-frankfurt.de (Rainer Kemp)

Keywords

Comments

Chan and Manna prove that a(n) is odd if and only if n is in A003714. - Jason Kimberley, Sep 14 2009
The number of ways to partition a set of 2*n elements into n disjoint subsets. - Vladimir Reshetnikov, Oct 10 2016
Conjecture: a(2*n+1) is divisible by (2*n + 1)^2. - Peter Bala, Mar 30 2025

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 90*x^3 + 1701*x^4 + 42525*x^5 +...,
where A(x) = 1 + 1^2*x*exp(-1*x) + 2^4*exp(-2^2*x)*x^2/2! + 3^6*exp(-3^2*x)*x^3/3! + 4^8*exp(-4^2*x)*x^4/4! + 5^10*exp(-5^2*x)*x^5/5! + ... - _Paul D. Hanna_, Oct 17 2012
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.

Crossrefs

Programs

  • Maple
    A007820 := proc(n) Stirling2(2*n,n) ; end proc:
    seq(A007820(n),n=0..20) ; # R. J. Mathar, Mar 15 2011
  • Mathematica
    Table[StirlingS2[2n, n], {n, 1, 12}] (* Emanuele Munarini, Mar 12 2011 *)
  • Maxima
    makelist(stirling2(2*n,n),n,0,12); /* Emanuele Munarini, Mar 12 2011 */
    
  • PARI
    a(n)=stirling(2*n,n,2); /* Joerg Arndt, Jul 01 2011 */
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), n)} \\ Paul D. Hanna, Oct 17 2012
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,(m^2)^m*exp(-m^2*x+x*O(x^n))*x^m/m!),n)} \\ Paul D. Hanna, Oct 17 2012
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A007820(n): return stirling(n<<1,n) # Chai Wah Wu, Jun 09 2025
  • Sage
    [stirling_number2(2*i,i) for i in range(1,20)] # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n) = A048993(2n,n). - R. J. Mathar, Mar 15 2011
Asymptotic: a(n) ~ (4*n/(e*z*(2-z)))^n/sqrt(2*Pi*n*(z-1)), where z = A256500 = 1.59362426... is a root of the equation exp(z)*(2-z)=2. - Vaclav Kotesovec, May 30 2011
a(n) = 1/n! * Sum_{k = 0..n} binomial(n,k)*(-1)^k*(n-k)^(2*n). - Emanuele Munarini, Jul 01 2011
a(n) = [x^n] 1 / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Oct 17 2012
O.g.f.: Sum_{n>=1} (n^2)^n * exp(-n^2*x) * x^n/n! = Sum_{n>=1} S2(2*n,n)*x^n. - Paul D. Hanna, Oct 17 2012
G.f.: Sum_{n > 0} (a(n)*n!/(2*n)!)*x^n = x*B'(x)/B(x)-1, where B(x) satisfies B(x)^2 = x*(exp(B(x))-1). - Vladimir Kruchinin, Mar 13 2013
a(n) = Sum_{j = 0..n} (-1)^(n-j)*n^j*binomial(2*n,j)*stirling2(2*n-j,n). - Vladimir Kruchinin, Jun 14 2013

Extensions

Typo in Mathematica program fixed by Vincenzo Librandi, May 04 2013
a(0)=1 prepended by Alois P. Heinz, Feb 01 2018

A350376 a(n) = [x^n] Product_{k=1..n} 1/(1 - k*x)^2.

Original entry on oeis.org

1, 2, 23, 480, 14627, 587580, 29331038, 1750923328, 121673580435, 9648709656300, 859874920598850, 85078769750118144, 9254316901029412110, 1097635452798476278232, 140986468651523106196060, 19496446561112852736019200, 2887977880849714395963280515
Offset: 0

Views

Author

Seiichi Manyama, Dec 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[Series[Product[1/(1 - k*x)^2, {k, 1, n}], {x, 0, n}], x, n]; Array[a, 17, 0] (* Amiram Eldar, Dec 28 2021 *)
    Table[Sum[StirlingS2[n + k, n]*StirlingS2[2*n - k, n], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 29 2021 *)
  • PARI
    a(n) = sum(k=0, n, stirling(n+k, n, 2)*stirling(2*n-k, n, 2));

Formula

a(n) = Sum_{k=0..n} Stirling2(n+k, n) * Stirling2(2*n-k, n).
a(n) ~ c * d^n * (n-1)!, where d = 27 / (4*LambertW(-3*exp(-3/2)/2)^2 * (3 + 2*LambertW(-3*exp(-3/2)/2))) = 9.858422414446789720857925020919293523149... and c = sqrt(3/(-LambertW(-3*exp(-3/2)/2) * (1 + LambertW(-3*exp(-3/2)/2)))) / (4*Pi) = 0.28482428628793763109169664913715827647091747... - Vaclav Kotesovec, Dec 28 2021, updated May 14 2025

A384031 a(n) = [x^n] Product_{k=0..n} (1 + k*x)^4.

Original entry on oeis.org

1, 4, 62, 1680, 65446, 3334800, 210218956, 15803243456, 1380404187558, 137419388080920, 15359405910256580, 1904647527097204032, 259511601503239509004, 38539384808775589973416, 6195988524478342471690200, 1072149116496356641327200000, 198683315255720972000976370950
Offset: 0

Views

Author

Seiichi Manyama, May 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
  • PARI
    a(n) = sum(i=0, n, sum(j=0, 3*n-i, sum(k=0, 3*n-i-j, abs(stirling(n+1, i+1, 1)*stirling(n+1, j+1, 1)*stirling(n+1, k+1, 1)*stirling(n+1, 3*n-i-j-k+1, 1)))));

Formula

a(n) = Sum_{0<=i, j, k, l<=n and i+j+k+l=3*n} |Stirling1(n+1,i+1) * Stirling1(n+1,j+1) * Stirling1(n+1,k+1) * Stirling1(n+1,l+1)|.
a(n) ~ 2^(8*n + 7/2) * w^(4*n + 5/2) * n^(n - 1/2) / (sqrt(Pi*(w-1)) * 3^(3*n + 5/2) * exp(n) * (4*w-3)^n), where w = -LambertW(-1,-3*exp(-3/4)/4) = 1.300200741659068588153265179374583756429... - Vaclav Kotesovec, May 18 2025

A383862 a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^3.

Original entry on oeis.org

1, 3, 48, 1386, 58278, 3225915, 221726711, 18216234288, 1741626159966, 189977753488050, 23285057201978520, 3168272346322892094, 473878954663846060735, 77281168674525142984020, 13647787698908399220563400, 2594721838238358445753776000, 528401900314147344955336365822
Offset: 0

Views

Author

Seiichi Manyama, May 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x)^3, {k, 1, n}], {x, 0, n}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
    (* or *)
    Table[Sum[StirlingS2[i + n, n] * StirlingS2[j + n, n] * StirlingS2[2*n - i - j, n], {i, 0, n}, {j, 0, n-i}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
  • PARI
    a(n) = sum(i=0, n, sum(j=0, n-i, stirling(i+n, n, 2)*stirling(j+n, n, 2)*stirling(2*n-i-j, n, 2)));

Formula

a(n) = Sum_{i, j, k>=0 and i+j+k=n} Stirling2(i+n,n) * Stirling2(j+n,n) * Stirling2(k+n,n).
a(n) ~ 2^(8*n + 3/2) * n^(n - 1/2) / (sqrt(Pi*(1-w)) * exp(n) * 3^(3*n + 3/2) * (4 - 3*w)^n * w^(3*n + 1)), where w = -LambertW(-4*exp(-4/3)/3) = 0.727473355414332993149219573314579663... - Vaclav Kotesovec, May 18 2025

A351508 a(n) = [x^n] Product_{k=1..n} 1/(1 - k*x)^n.

Original entry on oeis.org

1, 1, 23, 1386, 162154, 31354800, 9078595483, 3682549444112, 1994756395887972, 1391788744738729470, 1216130179327397765925, 1301126343608005909401330, 1673298722590019165433540916, 2547164111922284803722749855516
Offset: 0

Views

Author

Seiichi Manyama, Feb 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k*x)^n, {k,1,n}], {x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 18 2022 *)
  • PARI
    a(n) = polcoef(1/prod(k=1, n, 1-k*x+x*O(x^n))^n, n);

Formula

a(n) ~ exp(n + 5/3) * n^(2*n - 1/2) / (sqrt(Pi) * 2^(n + 1/2)). - Vaclav Kotesovec, Feb 18 2022
a(n) = Sum_{x_1, x_2,..., x_n >= 0 and x_1 + x_2 + ... + x_n = n} Product_{k=1..n} Stirling2(x_k + n,n). - Seiichi Manyama, May 18 2025

A384088 a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^4.

Original entry on oeis.org

1, 8, 288, 18528, 1728000, 211687080, 32159822688, 5835397918336, 1231573968949248, 296447550279133320, 80158746419240852000, 24057027574081163030688, 7935414295799696292767232, 2853706409310576479751168168, 1111199574070700473937862463200, 465782420445680979210397280524800
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k*x)^4/(1-k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 16}]

Formula

a(n) ~ c * d^n * n! / n, where d = 29.85915450232266280267400661836716424701025678171993103713550551... and c = 0.415660498916272367812330643610916948922178337726778287649763513...
Showing 1-6 of 6 results.