cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 69 results. Next

A187653 Binomial cumulative sums of the central Stirling numbers of the second kind (A007820).

Original entry on oeis.org

1, 2, 10, 115, 2108, 52006, 1606229, 59550709, 2575966264, 127343893378, 7081926869746, 437585883729512, 29740614295527535, 2205002457135885616, 177099066222770055407, 15317784128757306540986, 1419476705128570400447376
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Cf. A007820.

Programs

  • Maple
    seq(sum(binomial(n,k)*combinat[stirling2](2*k,k),k=0..n),n=0..12);
  • Mathematica
    Table[Sum[Binomial[n, k]StirlingS2[2k, k], {k, 0, n}], {n, 0, 16}]
  • Maxima
    makelist(sum(binomial(n,k)*stirling2(2*k,k),k,0,n),n,0,12);
    
  • PARI
    a(n)=polcoeff(sum(m=0,n,m^(2*m)/m!*x^m/(1-x)^(m+1)*exp(-m^2*x/(1-x+x*O(x^n)))),n)
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Jan 02 2013

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*S(2*k,k).
a(n) ~ exp(c*(2-c)/4) * StirlingS2(2*n,n) ~ 2^(2*n-1/2)*n^(n-1/2)/(sqrt(Pi*(1-c))*exp(n-c*(2-c)/4)*(c*(2-c))^n), where c = - LambertW(-2/exp(2)) = 0.406375739959959907676958... - Vaclav Kotesovec, Jan 02 2013
O.g.f.: Sum_{n>=0} n^(2*n)/n! * x^n/(1-x)^(n+1) * exp(-n^2*x/(1-x)). - Paul D. Hanna, Jan 02 2013

A187659 Convolution of the (signless) central Stirling numbers of the first kind (A187646) and the central Stirling numbers of the second kind (A007820).

Original entry on oeis.org

1, 2, 19, 333, 8862, 322885, 15061381, 858280605, 57766424400, 4479377168841, 392785285842806, 38393983653735732, 4136603248470746422, 486806030644218961182, 62109988002922704031388, 8537900524822110186179616
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    seq(sum(abs(combinat[stirling1](2*k,k))*combinat[stirling2](2*(n-k),n-k),k=0..n),n=0..12);
  • Mathematica
    Table[Sum[Abs[StirlingS1[2k, k]]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum(abs(stirling1(2*k,k))*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0, n, abs(stirling(2*k, k, 1)*stirling(2*(n-k), n-k, 2))); \\ Michel Marcus, May 28 2017

Formula

a(n) = Sum_{k=0..n} s(2*k,k)*S(2*n-2*k,n-k).
a(n) ~ n^n * c^(2*n) * 2^(3*n-1) / (sqrt(Pi*(c-1)*n) * exp(n) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2). - Vaclav Kotesovec, May 21 2014

A187662 Convolution of the (signless) central Lah numbers (A187535) and the central Stirling numbers of the second kind (A007820).

Original entry on oeis.org

1, 3, 45, 1340, 62133, 3926607, 313159138, 30077004204, 3373855596485, 432604296358341, 62396125789568633, 9997677582465775336, 1761777732880595653932, 338625441643226149909356, 70500059235176885929427760
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
    seq(sum(L(k)*combinat[stirling2](2*(n-k),n-k),k=0..n),n=0..12);
  • Mathematica
    L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
    Table[Sum[L[k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 14}]
  • Maxima
    L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
    makelist(sum(L(k)*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} Lah(2*k,k)*S(2*n-2*k,n-k).
a(n) ~ 2^(4*n) * n^n / (exp(n) * sqrt(2*Pi*n)). - Vaclav Kotesovec, May 21 2014

A192661 Floor-Sqrt transform of central Stirling numbers of the second kind (A007820).

Original entry on oeis.org

1, 1, 2, 9, 41, 206, 1150, 7023, 46279, 325845, 2432608, 19138508, 157893016, 1360356046, 12197663221, 113489506443, 1092914231524, 10869407462093, 111421588497433, 1175241503062627, 12735340966302227, 141585732942425447, 1612917155538690101
Offset: 0

Views

Author

Emanuele Munarini, Jul 07 2011

Keywords

Crossrefs

Cf. A007820.

Programs

  • Mathematica
    Table[Floor[Sqrt[StirlingS2[2n,n]]],{n,0,100}]
  • Maxima
    makelist(floor(sqrt(stirling2(2*n,n))),n,0,24);

Formula

a(n) = floor(sqrt(Stirling2(2*n,n))).

A003714 Fibbinary numbers: if n = F(i1) + F(i2) + ... + F(ik) is the Zeckendorf representation of n (i.e., write n in Fibonacci number system) then a(n) = 2^(i1 - 2) + 2^(i2 - 2) + ... + 2^(ik - 2). Also numbers whose binary representation contains no two adjacent 1's.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 16, 17, 18, 20, 21, 32, 33, 34, 36, 37, 40, 41, 42, 64, 65, 66, 68, 69, 72, 73, 74, 80, 81, 82, 84, 85, 128, 129, 130, 132, 133, 136, 137, 138, 144, 145, 146, 148, 149, 160, 161, 162, 164, 165, 168, 169, 170, 256, 257, 258, 260, 261, 264
Offset: 0

Views

Author

Keywords

Comments

The name "Fibbinary" is due to Marc LeBrun.
"... integers whose binary representation contains no consecutive ones and noticed that the number of such numbers with n bits was fibonacci(n)". [posting to sci.math by Bob Jenkins (bob_jenkins(AT)burtleburtle.net), Jul 17 2002]
From Benoit Cloitre, Mar 08 2003: (Start)
A number m is in the sequence if and only if C(3m, m) (or equally, C(3m, 2m)) is odd.
a(n) == A003849(n) (mod 2). (End)
Numbers m such that m XOR 2*m = 3*m. - Reinhard Zumkeller, May 03 2005. [This implies that A003188(2*a(n)) = 3*a(n) holds for all n.]
Numbers whose base-2 representation contains no two adjacent ones. For example, m = 17 = 10001_2 belongs to the sequence, but m = 19 = 10011_2 does not. - Ctibor O. Zizka, May 13 2008
m is in the sequence if and only if the central Stirling number of the second kind S(2*m, m) = A007820(m) is odd. - O-Yeat Chan (math(AT)oyeat.com), Sep 03 2009
A000120(3*a(n)) = 2*A000120(a(n)); A002450 is a subsequence.
Every nonnegative integer can be expressed as the sum of two terms of this sequence. - Franklin T. Adams-Watters, Jun 11 2011
Subsequence of A213526. - Arkadiusz Wesolowski, Jun 20 2012
This is also the union of A215024 and A215025 - see the Comment in A014417. - N. J. A. Sloane, Aug 10 2012
The binary representation of each term m contains no two adjacent 1's, so we have (m XOR 2m XOR 3m) = 0, and thus a two-player Nim game with three heaps of (m, 2m, 3m) stones is a losing configuration for the first player. - V. Raman, Sep 17 2012
Positions of zeros in A014081. - John Keith, Mar 07 2022
These numbers are similar to Fibternary numbers A003726, Tribbinary numbers A060140 and Tribternary numbers. This sequence is a subsequence of Fibternary numbers A003726. The number of Fibbinary numbers less than any power of two is a Fibonacci number. We can generate this sequence recursively: start with 0 and 1; then, if x is in the sequence add 2x and 4x+1 to the sequence. The Fibbinary numbers have the property that the n-th Fibbinary number is even if the n-th term of the Fibonacci word is a. Respectively, the n-th Fibbinary number is odd (of the form 4x+1) if the n-th term of the Fibonacci word is b. Every number has a Fibbinary multiple. - Tanya Khovanova and PRIMES STEP Senior, Aug 30 2022
This is the ordered set S of numbers defined recursively by: 0 is in S; if x is in S, then 2*x and 4*x + 1 are in S. See Kimberling (2006) Example 3, in references below. - Harry Richman, Jan 31 2024

Examples

			From _Joerg Arndt_, Jun 11 2011: (Start)
In the following, dots are used for zeros in the binary representation:
  a(n)  binary(a(n))  n
    0:    .......     0
    1:    ......1     1
    2:    .....1.     2
    4:    ....1..     3
    5:    ....1.1     4
    8:    ...1...     5
    9:    ...1..1     6
   10:    ...1.1.     7
   16:    ..1....     8
   17:    ..1...1     9
   18:    ..1..1.    10
   20:    ..1.1..    11
   21:    ..1.1.1    12
   32:    .1.....    13
   33:    .1....1    14
   34:    .1...1.    15
   36:    .1..1..    16
   37:    .1..1.1    17
   40:    .1.1...    18
   41:    .1.1..1    19
   42:    .1.1.1.    20
   64:    1......    21
   65:    1.....1    22
(End)
		

References

  • Donald E. Knuth, The Art of Computer Programming: Fundamental Algorithms, Vol. 1, 2nd ed., Addison-Wesley, 1973, pp. 85, 493.

Crossrefs

A007088(a(n)) = A014417(n) (same sequence in binary). Complement: A004780. Char. function: A085357. Even terms: A022340, odd terms: A022341. First difference: A129761.
Other sequences based on similar restrictions on binary expansion: A003726 & A278038, A003754, A048715, A048718, A107907, A107909.
3*a(n) is in A001969.
Cf. A014081 (count 11 bits).

Programs

  • Haskell
    import Data.Set (Set, singleton, insert, deleteFindMin)
    a003714 n = a003714_list !! n
    a003714_list = 0 : f (singleton 1) where
       f :: Set Integer -> [Integer]
       f s = m : (f $ insert (4*m + 1) $ insert (2*m) s')
             where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 03 2012, Feb 07 2012
    
  • Maple
    A003714 := proc(n)
        option remember;
        if n < 3 then
            n ;
        else
            2^(A072649(n)-1) + procname(n-combinat[fibonacci](1+A072649(n))) ;
        end if;
    end proc:
    seq(A003714(n),n=0..10) ;
    # To produce a table giving n, a(n) (base 10), a(n) (base 2) - from N. J. A. Sloane, Sep 30 2018
    # binary: binary representation of n, in human order
    binary:=proc(n) local t1,L;
    if n<0 then ERROR("n must be nonnegative"); fi;
    if n=0 then return([0]); fi;
    t1:=convert(n,base,2); L:=nops(t1);
    [seq(t1[L+1-i],i=1..L)];
    end;
    for n from 0 to 100 do t1:=A003714(n); lprint(n, t1, binary(t1)); od:
  • Mathematica
    fibBin[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; FromDigits[fr, 2]]; Table[fibBin[n], {n, 0, 61}] (* Robert G. Wilson v, Sep 18 2004 *)
    Select[Range[0, 270], ! MemberQ[Partition[IntegerDigits[#, 2], 2, 1], {1, 1}] &] (* Harvey P. Dale, Jul 17 2011 *)
    Select[Range[256], BitAnd[#, 2 #] == 0 &] (* Alonso del Arte, Jun 18 2012 *)
    With[{r = Range[10^5]}, Pick[r, BitAnd[r, 2 r], 0]] (* Eric W. Weisstein, Aug 18 2017 *)
    Select[Range[0, 299], SequenceCount[IntegerDigits[#, 2], {1, 1}] == 0 &] (* Requires Mathematica version 10 or later. -- Harvey P. Dale, Dec 06 2018 *)
  • PARI
    msb(n)=my(k=1); while(k<=n, k<<=1); k>>1
    for(n=1,1e4,k=bitand(n,n<<1);if(k,n=bitor(n,msb(k)-1),print1(n", "))) \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    select( is_A003714(n)=!bitand(n,n>>1), [0..266])
    {(next_A003714(n,t)=while(t=bitand(n+=1,n<<1), n=bitor(n,1<A003714(t)) \\ M. F. Hasler, Nov 30 2021
    
  • Python
    for n in range(300):
        if 2*n & n == 0:
            print(n, end=",") # Alex Ratushnyak, Jun 21 2012
    
  • Python
    def A003714(n):
        tlist, s = [1,2], 0
        while tlist[-1]+tlist[-2] <= n:
            tlist.append(tlist[-1]+tlist[-2])
        for d in tlist[::-1]:
            s *= 2
            if d <= n:
                s += 1
                n -= d
        return s # Chai Wah Wu, Jun 14 2018
    
  • Python
    def fibbinary():
        x = 0
        while True:
            yield x
            y = ~(x >> 1)
            x = (x - y) & y # Falk Hüffner, Oct 23 2021
    (C++)
    /* start with x=0, then repeatedly call x=next_fibrep(x): */
    ulong next_fibrep(ulong x)
    {
        // 2 examples:         //  ex. 1             //  ex.2
        //                     // x == [*]0 010101   // x == [*]0 01010
        ulong y = x | (x>>1);  // y == [*]? 011111   // y == [*]? 01111
        ulong z = y + 1;       // z == [*]? 100000   // z == [*]? 10000
        z = z & -z;            // z == [0]0 100000   // z == [0]0 10000
        x ^= z;                // x == [*]0 110101   // x == [*]0 11010
        x &= ~(z-1);           // x == [*]0 100000   // x == [*]0 10000
        return x;
    }
    /* Joerg Arndt, Jun 22 2012 */
    
  • Scala
    (0 to 255).filter(n => (n & 2 * n) == 0) // Alonso del Arte, Apr 12 2020
    (C#)
    public static bool IsFibbinaryNum(this int n) => ((n & (n >> 1)) == 0) ? true : false; // Frank Hollstein, Jul 07 2021

Formula

No two adjacent 1's in binary expansion.
Let f(x) := Sum_{n >= 0} x^Fibbinary(n). (This is the generating function of the characteristic function of this sequence.) Then f satisfies the functional equation f(x) = x*f(x^4) + f(x^2).
a(0) = 0, a(1) = 1, a(2) = 2, a(n) = 2^(A072649(n) - 1) + a(n - A000045(1 + A072649(n))). - Antti Karttunen
It appears that this sequence gives m such that A082759(3*m) is odd; or, probably equivalently, m such that A037011(3*m) = 1. - Benoit Cloitre, Jun 20 2003
If m is in the sequence then so are 2*m and 4*m + 1. - Henry Bottomley, Jan 11 2005
A116361(a(n)) <= 1. - Reinhard Zumkeller, Feb 04 2006
A085357(a(n)) = 1; A179821(a(n)) = a(n). - Reinhard Zumkeller, Jul 31 2010
a(n)/n^k is bounded (but does not tend to a limit), where k = 1.44... = A104287. - Charles R Greathouse IV, Sep 19 2012
a(n) = a(A193564(n+1))*2^(A003849(n) + 1) + A003849(n) for n > 0. - Daniel Starodubtsev, Aug 05 2021
There are Fibonacci(n+1) terms with up to n bits in this sequence. - Charles R Greathouse IV, Oct 22 2021
Sum_{n>=1} 1/a(n) = 3.704711752910469457886531055976801955909489488376627037756627135425780134020... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022

Extensions

Edited by Antti Karttunen, Feb 21 2006
Cross reference to A007820 added (into O-Y.C. comment) by Jason Kimberley, Sep 14 2009
Typo corrected by Jeffrey Shallit, Sep 26 2014

A187646 (Signless) Central Stirling numbers of the first kind s(2n,n).

Original entry on oeis.org

1, 1, 11, 225, 6769, 269325, 13339535, 790943153, 54631129553, 4308105301929, 381922055502195, 37600535086859745, 4070384057007569521, 480544558742733545125, 61445535102359115635655, 8459574446076318147830625, 1247677142707273537964543265, 196258640868140652967646352465
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Comments

Number of permutations with n cycles on a set of size 2n.

Crossrefs

Programs

  • Maple
    seq(abs(Stirling1(2*n,n)), n=0..20);
  • Mathematica
    Table[Abs[StirlingS1[2n, n]], {n, 0, 12}]
    N[1 + 1/(2 LambertW[-1, -Exp[-1/2]/2]), 50] (* The constant z in the asymptotic - Vladimir Reshetnikov, Oct 08 2016 *)
  • Maxima
    makelist(abs(stirling1(2*n,n)),n,0,12);
    
  • PARI
    for(n=0,50, print1(abs(stirling(2*n, n, 1)), ", ")) \\ G. C. Greubel, Nov 09 2017

Formula

Asymptotic: a(n) ~ (2*n/(e*z*(1-z)))^n*sqrt((1-z)/(2*Pi*n*(2z-1))), where z=0.715331862959... is a root of the equation z = 2*(z-1)*log(1-z). - Vaclav Kotesovec, May 30 2011
Equivalent: a(n) ~ n!*(2*r^2/(r-1))^n/(2*Pi*n*sqrt(r-2)), where r=A226278. - Natalia L. Skirrow, Jul 13 2025
From Seiichi Manyama, May 20 2025: (Start)
a(n) = A132393(2*n,n).
a(n) = (2*n)! * [x^(2*n)] (-log(1 - x))^n / n!. (End)

A217913 O.g.f.: Sum_{n>=0} (n^3)^n * exp(-n^3*x) * x^n / n!.

Original entry on oeis.org

1, 1, 31, 3025, 611501, 210766920, 110687251039, 82310957214948, 82318282158320505, 106563273280541795575, 173373343599189364594756, 346289681454731077633095526, 833091176987705031151553054843, 2376102520162485084539597049185710
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 31*x^2 + 3025*x^3 + 611501*x^4 + ... + Stirling2(3*n, n)*x^n + ...
where
A(x) = 1 + 1^3*x*exp(-1^3*x) + 2^6*exp(-2^3*x)*x^2/2! + 3^9*exp(-3^3*x)*x^3/3! + 4^12*exp(-4^3*x)*x^4/4! + 5^15*exp(-5^3*x)*x^5/5! + ...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[3*n,n],{n,0,20}] (* Vaclav Kotesovec, Feb 28 2013 *)
  • Maxima
    makelist(stirling2(3*n, n), n, 0, 13); /* Martin Ettl, Oct 15 2012 */
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(k^3)^k*exp(-k^3*x +x*O(x^n))*x^k/k!),n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^3)^k*x^k/(1+k^3*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(3*n, n)}
    for(n=0,20,print1(a(n),", "))
    

Formula

a(n) = Stirling2(3*n, n).
a(n) = [x^(3*n)] (3*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(2*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^3)^k*x^k / (1 + k^3*x)^(k+1).
a(n) ~ 9^n*exp(n*(c+1))*n^(2*n)/((c+3)^(2*n)*sqrt(2*Pi*(c+1)*n)), where c = -0.1785606278779211... = LambertW(-3/exp(3)) = A226750. - Vaclav Kotesovec, Feb 28 2013

A298851 a(n) = [x^n] Product_{k=1..n} 1/(1-k^2*x).

Original entry on oeis.org

1, 1, 21, 1408, 196053, 46587905, 16875270660, 8657594647800, 5974284925007685, 5336898188553325075, 5992171630749371157181, 8260051854943114812198756, 13714895317396748230146099660, 26998129079190909699998105620908, 62173633286588800021263427046090792
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(k, n) option remember; `if`(k=0, 1,
          add(b(k-1, j)*j^2, j=1..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^2*x), {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 02 2018 *)
    Join[{1}, Table[2*Sum[(-1)^(n-k) * Binomial[2*n, n-k] * k^(4*n), {k, 0, n}]/(2*n)!, {n, 1, 20}]] (* Vaclav Kotesovec, May 15 2025 *)
  • Maxima
    a(n):=if n<1 then 1 else 2*sum((n-k)^(4*n)/((2*n-k)!*k!*(-1)^k),k,0,n);
    makelist(a(n), n, 0, 20); /* Tani Akinari, Mar 09 2021 */

Formula

From Vaclav Kotesovec, Feb 02 2018, updated May 12 2025: (Start)
a(n) ~ c * d^n * n^(2*n - 1/2), where d = 1.774513671664430848697327843228386312953174421074432567764556466987... and c = 0.617929515483613293691991371141292259390065108300160936187723552669...
In closed form, a(n) ~ n^(2*n - 1/2) * r^(4*n + 1) / (sqrt(Pi*(2 - r^2)) * (r^2 - 1)^n * exp(2*n)), where r = 1.04438203376083348498401390634474776086902815721... is the root of the equation (1-r)/(1+r) = -exp(-4/r). (End)
a(n) = 2*(Sum_{k=0..n} (n-k)^(4*n)/((2*n-k)!*k!*(-1)^k)) for n>0. - Tani Akinari, Mar 09 2021
a(n) = A036969(2n,n) = A269945(2n,n). - Alois P. Heinz, Feb 19 2022
From Seiichi Manyama, May 12 2025: (Start)
a(n) = Sum_{k=0..2*n} (-n)^k * binomial(4*n,k) * Stirling2(4*n-k,2*n).
a(n) = Sum_{k=0..2*n} (-1)^k * Stirling2(k+n,n) * Stirling2(3*n-k,n). (End)

A217914 O.g.f.: Sum_{n>=0} (n^4)^n * exp(-n^4*x) * x^n / n!.

Original entry on oeis.org

1, 1, 127, 86526, 171798901, 749206090500, 6090236036084530, 82892803728383735268, 1751346256720122175776157, 54294340536065700496358447625, 2364684125291482936353925428946680, 139762001313639974628848043262243505970, 10897986831117690497797320098390628446479030
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 127*x^2 + 86526*x^3 + 171798901*x^4 +...+ Stirling2(4*n,n)*x^n + ...
where
A(x) = 1 + 1^4*x*exp(-1^4*x) + 2^8*exp(-2^4*x)*x^2/2! + 3^12*exp(-3^4*x)*x^3/3! + 4^16*exp(-4^4*x)*x^4/4! + 5^20*exp(-5^4*x)*x^5/5! + ...
is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[4*n,n],{n,0,20}] (* Vaclav Kotesovec, May 23 2013 *)
  • Maxima
    makelist(stirling2(4*n, n), n, 0, 12); /* Martin Ettl, Oct 15 2012 */
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(k^4)^k*exp(-k^4*x +x*O(x^n))*x^k/k!),n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^4)^k*x^k/(1+k^4*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(3*n))), 3*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(4*n, n)}
    for(n=0,12,print1(a(n),", "))
    

Formula

a(n) = Stirling2(4*n, n).
a(n) = [x^(4*n)] (4*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(3*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^4)^k*x^k / (1 + k^4*x)^(k+1).
a(n) ~ 2^(8*n)*n^(3*n)/(sqrt(2*Pi*n*(1-c))*c^n*exp(3*n)*(4-c)^(3*n)), where c = -LambertW(-4/exp(4)) = 0.07930960512711... - Vaclav Kotesovec, May 23 2013

A217915 O.g.f.: Sum_{n>=1} (n^5)^n * exp(-n^5*x) * x^n / n!.

Original entry on oeis.org

1, 1, 511, 2375101, 45232115901, 2436684974110751, 299310102746948685757, 72786959006434393367186463, 31712979422428631132831124895809, 22982258052528294182955639980819773510, 26154716515862881292012777396577993781727011
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 511*x^2 + 2375101*x^3 + 45232115901*x^4 +...+ Stirling2(5*n, n)*x^n +...
where
A(x) = 1 + 1^5*x*exp(-1^5*x) + 2^10*exp(-2^5*x)*x^2/2! + 3^15*exp(-3^5*x)*x^3/3! + 4^20*exp(-4^5*x)*x^4/4! + 5^25*exp(-5^5*x)*x^5/5! +...
is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[5*n,n],{n,0,20}] (* Vaclav Kotesovec, May 23 2013 *)
  • Maxima
    makelist(stirling2(5*n, n), n, 0, 10); /* Martin Ettl, Oct 15 2012 */
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(k^5)^k*exp(-k^5*x +x*O(x^n))*x^k/k!),n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^5)^k*x^k/(1+k^5*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(4*n))), 4*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(5*n, n)}
    for(n=0,12,print1(a(n),", "))
    

Formula

a(n) = Stirling2(5*n, n).
a(n) = [x^(5*n)] (5*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(4*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^5)^k*x^k / (1 + k^5*x)^(k+1).
a(n) ~ n^(4*n)*5^(5*n) / (sqrt(2*Pi*n*(1-c)) * exp(4*n) * (5-c)^(4*n) * c^n), where c = -LambertW(-5/exp(5)) = 0.0348857682557... - Vaclav Kotesovec, May 23 2013
Showing 1-10 of 69 results. Next