A187653 Binomial cumulative sums of the central Stirling numbers of the second kind (A007820).
1, 2, 10, 115, 2108, 52006, 1606229, 59550709, 2575966264, 127343893378, 7081926869746, 437585883729512, 29740614295527535, 2205002457135885616, 177099066222770055407, 15317784128757306540986, 1419476705128570400447376
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
Crossrefs
Cf. A007820.
Programs
-
Maple
seq(sum(binomial(n,k)*combinat[stirling2](2*k,k),k=0..n),n=0..12);
-
Mathematica
Table[Sum[Binomial[n, k]StirlingS2[2k, k], {k, 0, n}], {n, 0, 16}]
-
Maxima
makelist(sum(binomial(n,k)*stirling2(2*k,k),k,0,n),n,0,12);
-
PARI
a(n)=polcoeff(sum(m=0,n,m^(2*m)/m!*x^m/(1-x)^(m+1)*exp(-m^2*x/(1-x+x*O(x^n)))),n) for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Jan 02 2013
Formula
a(n) = Sum_{k=0..n} binomial(n,k)*S(2*k,k).
a(n) ~ exp(c*(2-c)/4) * StirlingS2(2*n,n) ~ 2^(2*n-1/2)*n^(n-1/2)/(sqrt(Pi*(1-c))*exp(n-c*(2-c)/4)*(c*(2-c))^n), where c = - LambertW(-2/exp(2)) = 0.406375739959959907676958... - Vaclav Kotesovec, Jan 02 2013
O.g.f.: Sum_{n>=0} n^(2*n)/n! * x^n/(1-x)^(n+1) * exp(-n^2*x/(1-x)). - Paul D. Hanna, Jan 02 2013
Comments