cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A187656 Convolution of the (signless) central Stirling numbers of the first kind (A187646).

Original entry on oeis.org

1, 2, 23, 472, 14109, 557138, 27417263, 1617536576, 111304630793, 8752522524930, 774271257457719, 76102169738598232, 8227653697751043061, 970337814111625277394, 123968202132756025685151, 17055359730313188973301568
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Cf. A187646.

Programs

  • Maple
    seq(sum(abs(combinat[stirling1](2*k,k))*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
  • Mathematica
    Table[Sum[Abs[StirlingS1[2k, k]]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum(abs(stirling1(2*k,k))*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0, n, abs(stirling(2*k, k, 1)*stirling(2*(n-k), n-k, 1))); \\ Michel Marcus, May 28 2017

Formula

a(n) = Sum_{k=0..n} s(2*k,k)*s(2*n-2*k,n-k).
a(n) ~ n^n * c^(2*n) * 2^(3*n) / (sqrt(Pi*(c-1)*n) * exp(n) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2). - Vaclav Kotesovec, May 21 2014

A187658 Binomial convolution of the (signless) central Stirling numbers of the first kind (A187646).

Original entry on oeis.org

1, 2, 24, 516, 16064, 655840, 33157240, 1999679696, 140128848384, 11189643689088, 1003005057594240, 99725721676986240, 10892178742891589792, 1296379044138734510656, 166999512859041432577280, 23149972436862049305233280
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    seq(sum(binomial(n,k)*abs(combinat[stirling1](2*k,k))*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
  • Mathematica
    Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum(binomial(n,k)*abs(stirling1(2*k,k))*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*s(2*k,k)*s(2*n-2*k,n-k).
Limit_{n->oo} (a(n)/n!)^(1/n) = -8*LambertW(-1, -exp(-1/2)/2)^2 / (1 + 2*LambertW(-1, -exp(-1/2)/2)) = 9.821629929136511797503... - Vaclav Kotesovec, May 30 2025

A293609 Triangle read by rows, a refinement of the central Stirling numbers of the first kind A187646, T(n, k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 7, 4, 0, 90, 120, 15, 0, 1701, 3696, 1316, 56, 0, 42525, 129780, 84630, 12180, 210, 0, 1323652, 5233404, 5184894, 1492744, 104049, 792, 0, 49329280, 240240000, 326426100, 151251100, 22840818, 852852, 3003, 0
Offset: 0

Views

Author

Peter Luschny, Oct 15 2017

Keywords

Examples

			Triangle starts:
[0]        1
[1]        1,         0
[2]        7,         4,         0
[3]       90,       120,        15,         0
[4]     1701,      3696,      1316,        56,        0
[5]    42525,    129780,     84630,     12180,      210,      0
[6]  1323652,   5233404,   5184894,   1492744,   104049,    792,    0
[7] 49329280, 240240000, 326426100, 151251100, 22840818, 852852, 3003, 0
		

Crossrefs

Row sums are A187646. T(n, 0) = A007820(n) the central Stirling numbers of the second kind A048993. T(n, n-1) = A001791(n) for n>=1.
Cf. A293616.

Programs

  • Maple
    for n in [$0..9] do seq(A293616(n, n, k), k=0..n) od;
  • Mathematica
    A293609Row[n_] := If[n==0, {1}, Join[CoefficientList[x^(-n) (1 - x)^(2n) PolyLog[-2n, n, x] /. Log[1 - x] -> 0, x], {0}]];
    Table[A293609Row[n], {n, 0, 7}] // Flatten

Formula

T(n, k) = A293616(n, n, k) for k = 0..n. The main diagonal in terms of rows (!) of the array of triangles A293616. T_row(n) is row n of triangle A293616(n,.,.), i.e. T_row(0) = [1] is row 0 of A000007, T_row(1) = [1, 0] is row 1 of A173018, T_row(2) = [7, 4, 0] is row 2 of A062253, and so on.
Let h(n) = x^(-n)*(1 - x)^(2*n)*PolyLog(-2*n, n, x) and p(n) the polynomial given by the expansion of h(n) after replacing log(1 - x) by 0. Then T(n, k) is the k-th coefficient of p(n) for 0 <= k < n.

A187654 Binomial cumulative sums of the (signless) central Stirling numbers of the first kind (A187646).

Original entry on oeis.org

1, 2, 14, 262, 7740, 305536, 15061692, 890220752, 61347750704, 4829414749504, 427559293150976, 42047904926171552, 4547772798257998256, 536504774914535869664, 68557641564333466819744, 9433619169586732241895776
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Cf. A187646.

Programs

  • Maple
    seq(sum(binomial(n,k)*abs(combinat[stirling1](2*k,k)),k=0..n),n=0..12);
  • Mathematica
    Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum(binomial(n,k)*abs(stirling1(2*k,k)),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*abs(stirling(2*k, k, 1))); \\ Michel Marcus, Aug 03 2021

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*s(2k,k).
a(n) ~ exp((2*c-1)/(8*c^2)) * abs(Stirling1(2*n,n)) ~ 2^(3*n-1) * n^n * exp((2*c-1)/(8*c^2)-n) * c^(2*n) / (sqrt(Pi*n*(c-1)) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... - Vaclav Kotesovec, May 21 2014

A187659 Convolution of the (signless) central Stirling numbers of the first kind (A187646) and the central Stirling numbers of the second kind (A007820).

Original entry on oeis.org

1, 2, 19, 333, 8862, 322885, 15061381, 858280605, 57766424400, 4479377168841, 392785285842806, 38393983653735732, 4136603248470746422, 486806030644218961182, 62109988002922704031388, 8537900524822110186179616
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    seq(sum(abs(combinat[stirling1](2*k,k))*combinat[stirling2](2*(n-k),n-k),k=0..n),n=0..12);
  • Mathematica
    Table[Sum[Abs[StirlingS1[2k, k]]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum(abs(stirling1(2*k,k))*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0, n, abs(stirling(2*k, k, 1)*stirling(2*(n-k), n-k, 2))); \\ Michel Marcus, May 28 2017

Formula

a(n) = Sum_{k=0..n} s(2*k,k)*S(2*n-2*k,n-k).
a(n) ~ n^n * c^(2*n) * 2^(3*n-1) / (sqrt(Pi*(c-1)*n) * exp(n) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2). - Vaclav Kotesovec, May 21 2014

A187650 Alternated cumulative sums of the (signless) central Stirling numbers of the first kind (A187646).

Original entry on oeis.org

1, 0, 11, 214, 6555, 262770, 13076765, 777866388, 53853263165, 4254252038764, 377667803463431, 37222867283396314, 4033161189724173207, 476511397553009371918, 60969023704806106263737, 8398605422371512041566888
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    seq(sum((-1)^(n-k)*abs(combinat[stirling1](2*k,k)),k=0..n),n=0..12);
  • Mathematica
    Table[Sum[(-1)^(n-k)Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum((-1)^(n-k)*abs(stirling1(2*k,k)),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*s(2*k,k).
a(n) ~ 2^(3*n-1) * c^(2*n) * n^(n - 1/2) / (sqrt(Pi*(c-1)) * (2*c-1)^n * exp(n)), where c = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... - Vaclav Kotesovec, Jul 05 2021

A187652 Alternated binomial cumulative sums of the (signless) central Stirling numbers of the first kind (A187646).

Original entry on oeis.org

1, 0, 10, 194, 5932, 237624, 11820780, 702992968, 48662470640, 3843811669088, 341207224961856, 33627579102171680, 3643463136559851440, 430456189350273371648, 55075003474909952394848, 7586546772496980353804704
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Cf. A187646.

Programs

  • Maple
    seq(sum((-1)^(n-k)*binomial(n,k)*abs(combinat[stirling1](2*k,k)),k=0..n),n=0..12);
  • Mathematica
    Table[Sum[(-1)^(n - k)Binomial[n, k]Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum((-1)^(n-k)*binomial(n,k)*abs(stirling1(2*k,k)),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*abs(Stirling1(2*k,k)).
a(n) ~ c * d^n * (n-1)!, where d = 8*w^2/(2*w-1), where w = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... and c = exp((1-2*w)/(8*w^2)) / (2^(3/2)*Pi*sqrt(w-1)) = exp(-1/d) / (2^(3/2)*Pi*sqrt(w-1)) = 0.11686978539934159049334861225275481804523808136863346883911376048... - Vaclav Kotesovec, Jul 05 2021, updated May 25 2025

A187664 Convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).

Original entry on oeis.org

1, 3, 49, 1483, 67615, 4173203, 326208269, 30880075203, 3430574739759, 437145190334383, 62803806114813801, 10038354053796477099, 1766255133182030548351, 339166069936077378326187, 70571377417819411767223541
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
    seq(sum(L(k)*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
  • Mathematica
    L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
    Table[Sum[L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}]
  • Maxima
    L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
    makelist(sum(L(k)*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} Lah(2*k,k)*s(2*n-2*k,n-k).
a(n) ~ 2^(4*n - 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)). - Vaclav Kotesovec, May 30 2025

A187666 Binomial convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).

Original entry on oeis.org

1, 3, 51, 1599, 74545, 4654255, 365549495, 34642467783, 3846064986001, 489429448820811, 70208261310969435, 11205444535728231855, 1969021774778391995761, 377672618542009829524551, 78507169034687468202172591
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
    seq(sum(binomial(n,k)*L(k)*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
  • Mathematica
    L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
    Table[Sum[Binomial[n,k]L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}]
  • Maxima
    L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
    makelist(sum(binomial(n,k)*L(k)*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * Lah(2k,k) * Stirling1(2n-2k,n-k).
a(n) ~ c * 2^(4*n + 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)), where c = Sum_{k>=0} abs(Stirling1(2*k,k)) / (k! * 2^(4*k+1)) = 0.550990257867992515027936630097897... - Vaclav Kotesovec, May 30 2025

A192662 Floor-Sqrt transform of (signless) central Stirling numbers of the first kind (A187646).

Original entry on oeis.org

1, 1, 3, 15, 82, 518, 3652, 28123, 233733, 2075597, 19542826, 193908574, 2017519282, 21921326573, 247882099197, 2908534759303, 35322473621014, 443010881207381, 5726889928765906, 76175517383629544, 1040964231177762308, 14594191539892866665
Offset: 0

Views

Author

Emanuele Munarini, Jul 07 2011

Keywords

Crossrefs

Cf. A187646.

Programs

  • Mathematica
    Table[Floor[Sqrt[Abs[StirlingS1[2n,n]]]],{n,0,100}]
  • Maxima
    makelist(floor(sqrt(abs(stirling1(2*n,n)))),n,0,24);

Formula

a(n) = floor(sqrt(|Stirling1(2*n,n)|)).
Showing 1-10 of 22 results. Next