A187656
Convolution of the (signless) central Stirling numbers of the first kind (A187646).
Original entry on oeis.org
1, 2, 23, 472, 14109, 557138, 27417263, 1617536576, 111304630793, 8752522524930, 774271257457719, 76102169738598232, 8227653697751043061, 970337814111625277394, 123968202132756025685151, 17055359730313188973301568
Offset: 0
-
seq(sum(abs(combinat[stirling1](2*k,k))*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
-
Table[Sum[Abs[StirlingS1[2k, k]]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 15}]
-
makelist(sum(abs(stirling1(2*k,k))*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);
-
a(n) = sum(k=0, n, abs(stirling(2*k, k, 1)*stirling(2*(n-k), n-k, 1))); \\ Michel Marcus, May 28 2017
A187658
Binomial convolution of the (signless) central Stirling numbers of the first kind (A187646).
Original entry on oeis.org
1, 2, 24, 516, 16064, 655840, 33157240, 1999679696, 140128848384, 11189643689088, 1003005057594240, 99725721676986240, 10892178742891589792, 1296379044138734510656, 166999512859041432577280, 23149972436862049305233280
Offset: 0
-
seq(sum(binomial(n,k)*abs(combinat[stirling1](2*k,k))*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
-
Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 15}]
-
makelist(sum(binomial(n,k)*abs(stirling1(2*k,k))*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);
A293609
Triangle read by rows, a refinement of the central Stirling numbers of the first kind A187646, T(n, k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 0, 7, 4, 0, 90, 120, 15, 0, 1701, 3696, 1316, 56, 0, 42525, 129780, 84630, 12180, 210, 0, 1323652, 5233404, 5184894, 1492744, 104049, 792, 0, 49329280, 240240000, 326426100, 151251100, 22840818, 852852, 3003, 0
Offset: 0
Triangle starts:
[0] 1
[1] 1, 0
[2] 7, 4, 0
[3] 90, 120, 15, 0
[4] 1701, 3696, 1316, 56, 0
[5] 42525, 129780, 84630, 12180, 210, 0
[6] 1323652, 5233404, 5184894, 1492744, 104049, 792, 0
[7] 49329280, 240240000, 326426100, 151251100, 22840818, 852852, 3003, 0
-
for n in [$0..9] do seq(A293616(n, n, k), k=0..n) od;
-
A293609Row[n_] := If[n==0, {1}, Join[CoefficientList[x^(-n) (1 - x)^(2n) PolyLog[-2n, n, x] /. Log[1 - x] -> 0, x], {0}]];
Table[A293609Row[n], {n, 0, 7}] // Flatten
A187654
Binomial cumulative sums of the (signless) central Stirling numbers of the first kind (A187646).
Original entry on oeis.org
1, 2, 14, 262, 7740, 305536, 15061692, 890220752, 61347750704, 4829414749504, 427559293150976, 42047904926171552, 4547772798257998256, 536504774914535869664, 68557641564333466819744, 9433619169586732241895776
Offset: 0
-
seq(sum(binomial(n,k)*abs(combinat[stirling1](2*k,k)),k=0..n),n=0..12);
-
Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}]
-
makelist(sum(binomial(n,k)*abs(stirling1(2*k,k)),k,0,n),n,0,12);
-
a(n) = sum(k=0, n, binomial(n, k)*abs(stirling(2*k, k, 1))); \\ Michel Marcus, Aug 03 2021
A187659
Convolution of the (signless) central Stirling numbers of the first kind (A187646) and the central Stirling numbers of the second kind (A007820).
Original entry on oeis.org
1, 2, 19, 333, 8862, 322885, 15061381, 858280605, 57766424400, 4479377168841, 392785285842806, 38393983653735732, 4136603248470746422, 486806030644218961182, 62109988002922704031388, 8537900524822110186179616
Offset: 0
-
seq(sum(abs(combinat[stirling1](2*k,k))*combinat[stirling2](2*(n-k),n-k),k=0..n),n=0..12);
-
Table[Sum[Abs[StirlingS1[2k, k]]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 15}]
-
makelist(sum(abs(stirling1(2*k,k))*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
-
a(n) = sum(k=0, n, abs(stirling(2*k, k, 1)*stirling(2*(n-k), n-k, 2))); \\ Michel Marcus, May 28 2017
A187650
Alternated cumulative sums of the (signless) central Stirling numbers of the first kind (A187646).
Original entry on oeis.org
1, 0, 11, 214, 6555, 262770, 13076765, 777866388, 53853263165, 4254252038764, 377667803463431, 37222867283396314, 4033161189724173207, 476511397553009371918, 60969023704806106263737, 8398605422371512041566888
Offset: 0
-
seq(sum((-1)^(n-k)*abs(combinat[stirling1](2*k,k)),k=0..n),n=0..12);
-
Table[Sum[(-1)^(n-k)Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}]
-
makelist(sum((-1)^(n-k)*abs(stirling1(2*k,k)),k,0,n),n,0,12);
A187652
Alternated binomial cumulative sums of the (signless) central Stirling numbers of the first kind (A187646).
Original entry on oeis.org
1, 0, 10, 194, 5932, 237624, 11820780, 702992968, 48662470640, 3843811669088, 341207224961856, 33627579102171680, 3643463136559851440, 430456189350273371648, 55075003474909952394848, 7586546772496980353804704
Offset: 0
-
seq(sum((-1)^(n-k)*binomial(n,k)*abs(combinat[stirling1](2*k,k)),k=0..n),n=0..12);
-
Table[Sum[(-1)^(n - k)Binomial[n, k]Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}]
-
makelist(sum((-1)^(n-k)*binomial(n,k)*abs(stirling1(2*k,k)),k,0,n),n,0,12);
A187664
Convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).
Original entry on oeis.org
1, 3, 49, 1483, 67615, 4173203, 326208269, 30880075203, 3430574739759, 437145190334383, 62803806114813801, 10038354053796477099, 1766255133182030548351, 339166069936077378326187, 70571377417819411767223541
Offset: 0
-
L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(sum(L(k)*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
-
L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}]
-
L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(sum(L(k)*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);
A187666
Binomial convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).
Original entry on oeis.org
1, 3, 51, 1599, 74545, 4654255, 365549495, 34642467783, 3846064986001, 489429448820811, 70208261310969435, 11205444535728231855, 1969021774778391995761, 377672618542009829524551, 78507169034687468202172591
Offset: 0
-
L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(sum(binomial(n,k)*L(k)*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
-
L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[Binomial[n,k]L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}]
-
L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(sum(binomial(n,k)*L(k)*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);
A192662
Floor-Sqrt transform of (signless) central Stirling numbers of the first kind (A187646).
Original entry on oeis.org
1, 1, 3, 15, 82, 518, 3652, 28123, 233733, 2075597, 19542826, 193908574, 2017519282, 21921326573, 247882099197, 2908534759303, 35322473621014, 443010881207381, 5726889928765906, 76175517383629544, 1040964231177762308, 14594191539892866665
Offset: 0
-
Table[Floor[Sqrt[Abs[StirlingS1[2n,n]]]],{n,0,100}]
-
makelist(floor(sqrt(abs(stirling1(2*n,n)))),n,0,24);
Showing 1-10 of 22 results.