A187655
Self-convolution of the central Stirling numbers of the second kind.
Original entry on oeis.org
1, 2, 15, 194, 3631, 89712, 2764268, 102207394, 4411265695, 217707856946, 12092696127691, 746552539553152, 50708165735187572, 3757864633323765824, 301719332111553586612, 26089939284112306045362, 2417245528055399202851119
Offset: 0
-
seq( add(combinat[stirling2](2*k,k) *combinat[stirling2](2*(n-k),n-k) ,k=0..n), n=0..12);
-
Table[Sum[StirlingS2[2k, k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 16}]
-
makelist(sum(stirling2(2*k,k)*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
A384495
a(n) = Sum_{k=0..n} binomial(n,k)^2 * abs(Stirling1(2*k,k)) * abs(Stirling1(2*n-2*k,n-k)).
Original entry on oeis.org
1, 2, 26, 648, 25094, 1372100, 99827020, 9233563136, 1045169591270, 140259346792380, 21754963505429340, 3823376222328582480, 749784319125445476092, 162122841942093462239368, 38288723630416561023861048, 9801732906198391239249940800, 2702731846233390353066363949830
Offset: 0
-
Table[Sum[Binomial[n,k]^2 * Abs[StirlingS1[2*k,k]] * Abs[StirlingS1[2*n-2*k, n-k]], {k, 0, n}], {n, 0, 20}]
A384496
a(n) = Sum_{k=0..n} binomial(n,k)^3 * abs(Stirling1(2*k,k)) * abs(Stirling1(2*n-2*k,n-k)).
Original entry on oeis.org
1, 2, 30, 1044, 68474, 7180900, 1050625720, 196205015216, 44361477901818, 11751610490415828, 3567182462164189140, 1220655384720089761080, 464932034143270233958352, 195108754505934104188716064, 89452431045403310104416682304, 44489455448017524780072427344000
Offset: 0
-
Table[Sum[Binomial[n,k]^3 * Abs[StirlingS1[2*k,k]] * Abs[StirlingS1[2*n-2*k,n-k]], {k, 0, n}], {n, 0, 20}]
A384501
a(n) = Sum_{k=0..n} abs(Stirling1(n,k)) * Stirling2(n,n-k).
Original entry on oeis.org
1, 0, 1, 9, 119, 2025, 42510, 1062761, 30854159, 1020615912, 37900765365, 1561459425955, 70682817696436, 3487456195458027, 186281997929231659, 10709829446929099865, 659427284782849503663, 43293574636994934145044, 3019108475859713906967738, 222868205832269470083471366
Offset: 0
-
Table[Sum[Abs[StirlingS1[n, k]]*StirlingS2[n, n-k], {k, 0, n}], {n, 0, 20}]
Table[Sum[StirlingS2[n, k]*Abs[StirlingS1[n, n-k]], {k, 0, n}], {n, 0, 20}]
Showing 1-4 of 4 results.
Comments