cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187658 Binomial convolution of the (signless) central Stirling numbers of the first kind (A187646).

Original entry on oeis.org

1, 2, 24, 516, 16064, 655840, 33157240, 1999679696, 140128848384, 11189643689088, 1003005057594240, 99725721676986240, 10892178742891589792, 1296379044138734510656, 166999512859041432577280, 23149972436862049305233280
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    seq(sum(binomial(n,k)*abs(combinat[stirling1](2*k,k))*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
  • Mathematica
    Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum(binomial(n,k)*abs(stirling1(2*k,k))*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*s(2*k,k)*s(2*n-2*k,n-k).
Limit_{n->oo} (a(n)/n!)^(1/n) = -8*LambertW(-1, -exp(-1/2)/2)^2 / (1 + 2*LambertW(-1, -exp(-1/2)/2)) = 9.821629929136511797503... - Vaclav Kotesovec, May 30 2025

A384495 a(n) = Sum_{k=0..n} binomial(n,k)^2 * abs(Stirling1(2*k,k)) * abs(Stirling1(2*n-2*k,n-k)).

Original entry on oeis.org

1, 2, 26, 648, 25094, 1372100, 99827020, 9233563136, 1045169591270, 140259346792380, 21754963505429340, 3823376222328582480, 749784319125445476092, 162122841942093462239368, 38288723630416561023861048, 9801732906198391239249940800, 2702731846233390353066363949830
Offset: 0

Views

Author

Vaclav Kotesovec, May 31 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^2 * Abs[StirlingS1[2*k,k]] * Abs[StirlingS1[2*n-2*k, n-k]], {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ 2^(4*n - 1/2) * n^(n - 3/2) * w^(2*n) / ((w-1) * Pi^(3/2) * exp(n) * (2*w-1)^n), where w = -LambertW(-1, -exp(-1/2)/2) = 1.7564312086261696769827376166...
Showing 1-2 of 2 results.