cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A007820 Stirling numbers of second kind S(2n,n).

Original entry on oeis.org

1, 1, 7, 90, 1701, 42525, 1323652, 49329280, 2141764053, 106175395755, 5917584964655, 366282500870286, 24930204590758260, 1850568574253550060, 148782988064375309400, 12879868072770626040000, 1194461517469807833782085, 118144018577011378596484455
Offset: 0

Views

Author

kemp(AT)sads.informatik.uni-frankfurt.de (Rainer Kemp)

Keywords

Comments

Chan and Manna prove that a(n) is odd if and only if n is in A003714. - Jason Kimberley, Sep 14 2009
The number of ways to partition a set of 2*n elements into n disjoint subsets. - Vladimir Reshetnikov, Oct 10 2016
Conjecture: a(2*n+1) is divisible by (2*n + 1)^2. - Peter Bala, Mar 30 2025

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 90*x^3 + 1701*x^4 + 42525*x^5 +...,
where A(x) = 1 + 1^2*x*exp(-1*x) + 2^4*exp(-2^2*x)*x^2/2! + 3^6*exp(-3^2*x)*x^3/3! + 4^8*exp(-4^2*x)*x^4/4! + 5^10*exp(-5^2*x)*x^5/5! + ... - _Paul D. Hanna_, Oct 17 2012
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.

Crossrefs

Programs

  • Maple
    A007820 := proc(n) Stirling2(2*n,n) ; end proc:
    seq(A007820(n),n=0..20) ; # R. J. Mathar, Mar 15 2011
  • Mathematica
    Table[StirlingS2[2n, n], {n, 1, 12}] (* Emanuele Munarini, Mar 12 2011 *)
  • Maxima
    makelist(stirling2(2*n,n),n,0,12); /* Emanuele Munarini, Mar 12 2011 */
    
  • PARI
    a(n)=stirling(2*n,n,2); /* Joerg Arndt, Jul 01 2011 */
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), n)} \\ Paul D. Hanna, Oct 17 2012
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,(m^2)^m*exp(-m^2*x+x*O(x^n))*x^m/m!),n)} \\ Paul D. Hanna, Oct 17 2012
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A007820(n): return stirling(n<<1,n) # Chai Wah Wu, Jun 09 2025
  • Sage
    [stirling_number2(2*i,i) for i in range(1,20)] # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n) = A048993(2n,n). - R. J. Mathar, Mar 15 2011
Asymptotic: a(n) ~ (4*n/(e*z*(2-z)))^n/sqrt(2*Pi*n*(z-1)), where z = A256500 = 1.59362426... is a root of the equation exp(z)*(2-z)=2. - Vaclav Kotesovec, May 30 2011
a(n) = 1/n! * Sum_{k = 0..n} binomial(n,k)*(-1)^k*(n-k)^(2*n). - Emanuele Munarini, Jul 01 2011
a(n) = [x^n] 1 / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Oct 17 2012
O.g.f.: Sum_{n>=1} (n^2)^n * exp(-n^2*x) * x^n/n! = Sum_{n>=1} S2(2*n,n)*x^n. - Paul D. Hanna, Oct 17 2012
G.f.: Sum_{n > 0} (a(n)*n!/(2*n)!)*x^n = x*B'(x)/B(x)-1, where B(x) satisfies B(x)^2 = x*(exp(B(x))-1). - Vladimir Kruchinin, Mar 13 2013
a(n) = Sum_{j = 0..n} (-1)^(n-j)*n^j*binomial(2*n,j)*stirling2(2*n-j,n). - Vladimir Kruchinin, Jun 14 2013

Extensions

Typo in Mathematica program fixed by Vincenzo Librandi, May 04 2013
a(0)=1 prepended by Alois P. Heinz, Feb 01 2018

A217900 O.g.f.: Sum_{n>=0} n^n * (n+1)^(n-1) * exp(-n*(n+1)*x) * x^n / n!.

Original entry on oeis.org

1, 1, 4, 38, 576, 12052, 322848, 10564304, 408903680, 18288706544, 928575662400, 52780935007968, 3321208845997056, 229232635832433664, 17221699990084108288, 1399139700462119135232, 122235936429355565580288, 11428226675376971405577984, 1138551595285580854471388160
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} (n+1)^(n-1) * exp(-(n+1)*x) * x^n/n!.
More generally, if we define a(n) for fixed integers m, t, and s>=0, by:
(0) Sum_{n>=0} m * n^(s*n) * (n*t+m)^(n-1) * exp(-n^s*(n*t+m)*x) * x^n/n! = Sum_{n>=0} a(n)*x^n
then the coefficients a(n) are integral and may be expressed by:
(1) a(n) = 1/n! * Sum_{k=0..n} m*(-1)^(n-k)*binomial(n,k) * k^(s*n) * (k*t+m)^(n-1).
(2) a(n) = 1/n! * [x^n] Sum_{k>=0} m*k^(s*k)*(k*t+m)^(k-1)*x^k / (1 + k^s*(k*t+m)*x)^(k+1).
(3) a(n) = 1/t^((s-1)*n) * [x^(s*n)] 1 + m*x*(1+m*x)^(n-1) / Product_{k=1..n} (1-k*t*x).
(4) a(n) = 1/t^((s-1)*n) * [x^(s*n)] 1 + m*x*(1-m*x)^(s*n) / Product_{k=1..n} (1-(k*t+m)*x).

Examples

			O.g.f.: A(x) = 1 + x + 4*x^2 + 38*x^3 + 576*x^4 + 12052*x^5 + 322848*x^6 +...
where
A(x) = 1 + 1^1*2^0*x*exp(-1*2*x) + 2^2*3^1*exp(-2*3*x)*x^2/2! + 3^3*4^2*exp(-3*4*x)*x^3/3! + 4^4*5^3*exp(-4*5*x)*x^4/4! + 5^5*6^4*exp(-5*6*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/n!*Sum[(-1)^(n-k)*Binomial[n, k]*k^n*(k+1)^(n-1), {k, 0, n}]; a[0]=1; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*(m+1)^(m-1)*x^m*exp(-m*(m+1)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, k^k*(k+1)^(k-1)*x^k/(1+k*(k+1)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^n*(k+1)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+x*(1+x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+x*(1-x)^n/prod(k=0, n, 1-(k+1)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n)=if(n==0,1,sum(k=0,n-1, binomial(n-1,k) * Stirling2(2*n-k-1,n)))} \\ Paul D. Hanna, Nov 13 2012
    /* PARI Programs for the General Case (START) ...................... */
    
  • PARI
    {a(n,m=1,t=1,s=1)=polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*exp(-k^s*(t*k+m)*x+x*O(x^n))*x^k/k!), n)}
    
  • PARI
    {a(n,m=1,t=1,s=1)=(1/n!)*polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*x^k/(1+k^s*(t*k+m)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n,m=1,t=1,s=1)=1/n!*sum(k=0, n, m*(-1)^(n-k)*binomial(n, k)*k^(s*n)*(t*k+m)^(n-1))}
    
  • PARI
    {a(n,m=1,t=1,s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1+m*x)^(n-1)/prod(k=0, n, 1-t*k*x +x*O(x^(s*n))), s*n)}
    
  • PARI
    {a(n,m=1,t=1,s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1-m*x)^(s*n)/prod(k=0, n, 1-(t*k+m)*x +x*O(x^(s*n))), s*n)}
    /* (END) ........................................................... */

Formula

a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * k^n * (k+1)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} k^k*(k+1)^(k-1)*x^k / (1 + k*(k+1)*x)^(k+1).
a(n) = [x^n] 1 + x*(1+x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + x*(1-x)^(n-1) / Product_{k=1..n} (1-(k+1)*x).
a(n) = A078739(n,n) for n>=1.
a(n) = Sum_{k=0..n-1} binomial(n-1,k) * Stirling2(2*n-k-1,n) for n>0, where Stirling2(n,k) = A008277(n,k). - Paul D. Hanna, Nov 13 2012
a(n) ~ 2^(2*n-1) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, May 09 2014

A226750 Decimal expansion of the number x other than -3 defined by x*e^x = -3/e^3.

Original entry on oeis.org

1, 7, 8, 5, 6, 0, 6, 2, 7, 8, 7, 7, 9, 2, 1, 1, 0, 6, 5, 9, 6, 8, 0, 8, 6, 6, 9, 7, 0, 5, 5, 1, 4, 8, 0, 4, 6, 5, 4, 1, 1, 8, 2, 5, 5, 9, 2, 6, 8, 8, 5, 9, 0, 7, 7, 2, 0, 1, 4, 2, 3, 0, 6, 0, 5, 8, 7, 8, 5, 6, 9, 5, 4, 9, 4, 4, 8, 2, 6, 0, 8, 7, 5, 4, 3, 1, 3, 4, 3, 4, 6, 5, 2, 1, 6, 0, 3, 5, 5, 6, 1, 0, 4, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			-0.178560627877921106596808669705514804654118255926885907720142306058785...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[ProductLog[-3/e^3], 105]][[1]]
  • PARI
    solve(x=0,1,3/exp(3)-x*exp(-x)) \\ Charles R Greathouse IV, Nov 19 2013

Extensions

Term a(104) corrected by G. C. Greubel, Nov 16 2017

A217914 O.g.f.: Sum_{n>=0} (n^4)^n * exp(-n^4*x) * x^n / n!.

Original entry on oeis.org

1, 1, 127, 86526, 171798901, 749206090500, 6090236036084530, 82892803728383735268, 1751346256720122175776157, 54294340536065700496358447625, 2364684125291482936353925428946680, 139762001313639974628848043262243505970, 10897986831117690497797320098390628446479030
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 127*x^2 + 86526*x^3 + 171798901*x^4 +...+ Stirling2(4*n,n)*x^n + ...
where
A(x) = 1 + 1^4*x*exp(-1^4*x) + 2^8*exp(-2^4*x)*x^2/2! + 3^12*exp(-3^4*x)*x^3/3! + 4^16*exp(-4^4*x)*x^4/4! + 5^20*exp(-5^4*x)*x^5/5! + ...
is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[4*n,n],{n,0,20}] (* Vaclav Kotesovec, May 23 2013 *)
  • Maxima
    makelist(stirling2(4*n, n), n, 0, 12); /* Martin Ettl, Oct 15 2012 */
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(k^4)^k*exp(-k^4*x +x*O(x^n))*x^k/k!),n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^4)^k*x^k/(1+k^4*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(3*n))), 3*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(4*n, n)}
    for(n=0,12,print1(a(n),", "))
    

Formula

a(n) = Stirling2(4*n, n).
a(n) = [x^(4*n)] (4*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(3*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^4)^k*x^k / (1 + k^4*x)^(k+1).
a(n) ~ 2^(8*n)*n^(3*n)/(sqrt(2*Pi*n*(1-c))*c^n*exp(3*n)*(4-c)^(3*n)), where c = -LambertW(-4/exp(4)) = 0.07930960512711... - Vaclav Kotesovec, May 23 2013

A217915 O.g.f.: Sum_{n>=1} (n^5)^n * exp(-n^5*x) * x^n / n!.

Original entry on oeis.org

1, 1, 511, 2375101, 45232115901, 2436684974110751, 299310102746948685757, 72786959006434393367186463, 31712979422428631132831124895809, 22982258052528294182955639980819773510, 26154716515862881292012777396577993781727011
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 511*x^2 + 2375101*x^3 + 45232115901*x^4 +...+ Stirling2(5*n, n)*x^n +...
where
A(x) = 1 + 1^5*x*exp(-1^5*x) + 2^10*exp(-2^5*x)*x^2/2! + 3^15*exp(-3^5*x)*x^3/3! + 4^20*exp(-4^5*x)*x^4/4! + 5^25*exp(-5^5*x)*x^5/5! +...
is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[5*n,n],{n,0,20}] (* Vaclav Kotesovec, May 23 2013 *)
  • Maxima
    makelist(stirling2(5*n, n), n, 0, 10); /* Martin Ettl, Oct 15 2012 */
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(k^5)^k*exp(-k^5*x +x*O(x^n))*x^k/k!),n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^5)^k*x^k/(1+k^5*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(4*n))), 4*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(5*n, n)}
    for(n=0,12,print1(a(n),", "))
    

Formula

a(n) = Stirling2(5*n, n).
a(n) = [x^(5*n)] (5*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(4*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^5)^k*x^k / (1 + k^5*x)^(k+1).
a(n) ~ n^(4*n)*5^(5*n) / (sqrt(2*Pi*n*(1-c)) * exp(4*n) * (5-c)^(4*n) * c^n), where c = -LambertW(-5/exp(5)) = 0.0348857682557... - Vaclav Kotesovec, May 23 2013

A129506 Number of partitions of a {2n-1}-set into n nonempty subsets.

Original entry on oeis.org

1, 3, 25, 350, 6951, 179487, 5715424, 216627840, 9528822303, 477297033785, 26826851689001, 1672162773483930, 114485073343744260, 8541149231801585700, 689692892575539953400, 59932861644880019603520, 5576731051262006158950735, 553234633385550257808059085
Offset: 1

Views

Author

Paul D. Hanna, Apr 18 2007

Keywords

Comments

B^{-1}(x) = Sum_{n>0} a(n)/(2*n-1)!*(n-1)! x^n is inverse function for x*B(x), where B(x) is g.f. for Bernoulli number (see A027641). - Vladimir Kruchinin, Jan 19 2012

Examples

			G.f.: A(x) = x + 3*x^2 + 25*x^3 + 350*x^4 + 6951*x^5 + 179487*x^6 + ... where A(x) = 1^1*x*exp(-1^2*x) + 2^3*exp(-2^2*x)*x^2/2! + 3^5*exp(-3^2*x)*x^3/3! + 4^7*exp(-4^2*x)*x^4/4! + 5^9*exp(-5^2*x)*x^5/5! + ... forms a power series in x with integer coefficients. - _Paul D. Hanna_, Oct 15 2012
		

Crossrefs

Programs

  • Maple
    a:= n-> Stirling2(2*n-1, n):
    seq(a(n), n=1..25);  # Alois P. Heinz, Dec 15 2013
  • Mathematica
    a[n_] := Sum[ Binomial[2*n - 2, j]*StirlingS2[2*n - j - 2, n-1], {j, 0, n-1}]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Jun 14 2013, after Vladimir Kruchinin *)
    Table[StirlingS2[2*n-1,n], {n, 1, 20}] (* Vaclav Kotesovec, Dec 15 2013 *)
  • Maxima
    a(n):=((2*n-1)*((sum((stirling2(2*i-1, i)*binomial(2*n-2, 2*i-1)*stirling2(2*(n-i)-1, n-i-1))/((n-i-1)*binomial(n-1, i)), i, 1, n-2))+(n-1)* stirling2(2*n-3, n-1)+stirling2(2*n-2, n-1)))/(n);
      makelist(a(n),n,1,10); /* Vladimir Kruchinin, Feb 28 2013 */
  • PARI
    a(n)=polcoeff(1/prod(k=1,n,1-k*x +x*O(x^n)),n-1)
    
  • PARI
    vector(66, n, abs( stirling(2*n-1, n, 2) ) ) /* Joerg Arndt, Jun 09 2012 */
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^(2*n-1))} \\ Paul D. Hanna, Oct 15 2012
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m^(2*m-1)*x^m*exp(-m^2*x+x*O(x^n))/m!),n)}
    for(n=1,20,print1(a(n),", "))
    

Formula

Central Stirling numbers of the second kind: a(n) = A008277(2n-1,n) for n >= 1.
G.f.: Sum_{n>=1} n^(2*n-1) * exp(-n^2*x) * x^n / n!, an integer series. - Paul D. Hanna, Oct 15 2012
a(n) = 1/n! * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * k^(2*n-1). - Paul D. Hanna, Oct 15 2012
a(n) = ((2*n-1)*((sum(i=1..n-2, (stirling2(2*i-1,i)*C(2*n-2,2*i-1)*stirling2(2*(n-i)-1,n-i-1))/((n-i-1)*C(n-1,i))))+(n-1)*stirling2(2*n-3,n-1) +stirling2(2*n-2,n-1)))/n. - Vladimir Kruchinin, Feb 28 2013
a(n-1) = sum(j=0..n, binomial(2*n,j)*stirling2(2*n-j,n)). - Vladimir Kruchinin, Jun 14 2013
a(n) ~ 2^(2*n-3/2) * n^(n-3/2) * (2-c)^(1-n) / (sqrt(Pi*(1-c)) * exp(n) * c^n), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, Dec 15 2013
a(n) = A258170(2*n-1,n). - Alois P. Heinz, Mar 16 2018

A218141 a(n) = Stirling2(n^2, n).

Original entry on oeis.org

1, 1, 7, 3025, 171798901, 2436684974110751, 14204422416132896951197888, 50789872166903636182659702516635946082, 155440114706926165785630654089245708839702615196926765, 541500903058656141876322139677626107784896646583041951351456223689104719
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2012

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 7*x^2 + 3025*x^3 + 171798901*x^4 + 2436684974110751*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[n^2, n],{n,0,10}] (* Vaclav Kotesovec, May 11 2014 *)
  • Maxima
    makelist(stirling2(n^2,n),n,0,30 ); /* Martin Ettl, Oct 21 2012 */
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(k^n)^k*exp(-k^n*x +x*O(x^n))*x^k/k!),n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(n^2+1))), n^2-n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(n^2, n)}
    for(n=0, 10, print1(a(n), ", "))
    

Formula

a(n) = [x^n] Sum_{k>=0} k^(n*k) * exp(-k^n*x) * x^k / k!.
a(n) = [x^(n^2-n)] 1 / Product_{k=1..n} (1-k*x).
a(n) ~ n^(n^2)/n!. - Vaclav Kotesovec, May 11 2014

A222526 O.g.f.: Sum_{n>=0} (n^6)^n * exp(-n^6*x) * x^n / n!.

Original entry on oeis.org

1, 1, 2047, 64439010, 11681056634501, 7713000216608565075, 14204422416132896951197888, 61232072982330045410678351728440, 545827051514425992551826008968173372261, 9173647538352903119028122246836507680995590680
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 2047*x^2 + 64439010*x^3 + 11681056634501*x^4 +...+ Stirling2(6*n, n)*x^n +...
where
A(x) = 1 + 1^6*x*exp(-1^6*x) + 2^12*exp(-2^6*x)*x^2/2! + 3^18*exp(-3^6*x)*x^3/3! + 4^24*exp(-4^6*x)*x^4/4! + 5^30*exp(-5^6*x)*x^5/5! +...
is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[6*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
  • PARI
    {a(n)=polcoeff(sum(k=0, n, (k^6)^k*exp(-k^6*x +x*O(x^n))*x^k/k!), n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^6)^k*x^k/(1+k^6*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(5*n))), 5*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(6*n, n)}
    for(n=0, 12, print1(a(n), ", "))

Formula

a(n) = Stirling2(6*n, n).
a(n) = [x^(6*n)] (6*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(5*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^6)^k*x^k / (1 + k^6*x)^(k+1).
a(n) ~ n^(5*n) * 6^(6*n) / (sqrt(2*Pi*(1-c)*n) * exp(5*n) * (6-c)^(5*n) * c^n), where c = -LambertW(-6*exp(-6)). - Vaclav Kotesovec, May 11 2014

A222527 O.g.f.: Sum_{n>=0} (n^7)^n * exp(-n^7*x) * x^n / n!.

Original entry on oeis.org

1, 1, 8191, 1742343625, 2998587019946701, 24204004899040755811870, 666480349285726891499539272955, 50789872166903636182659702516635946082, 9237419992097529135737293866043969707761346313, 3590622358224471993651445012122431990834934483552661750
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 8191*x^2 + 1742343625*x^3 + 2998587019946701*x^4 +...+ Stirling2(7*n, n)*x^n +...
where
A(x) = 1 + 1^7*x*exp(-1^7*x) + 2^14*exp(-2^7*x)*x^2/2! + 3^21*exp(-3^7*x)*x^3/3! + 4^28*exp(-4^7*x)*x^4/4! + 5^35*exp(-5^7*x)*x^5/5! +...
is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[7*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
  • PARI
    {a(n)=polcoeff(sum(k=0, n, (k^7)^k*exp(-k^7*x +x*O(x^n))*x^k/k!), n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^7)^k*x^k/(1+k^7*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(6*n))), 6*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(7*n, n)}
    for(n=0, 12, print1(a(n), ", "))

Formula

a(n) = Stirling2(7*n, n).
a(n) = [x^(7*n)] (7*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(6*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^7)^k*x^k / (1 + k^7*x)^(k+1).
a(n) ~ n^(6*n) * 7^(7*n) / (sqrt(2*Pi*(1-c)*n) * exp(6*n) * (7-c)^(6*n) * c^n), where c = -LambertW(-7*exp(-7)). - Vaclav Kotesovec, May 11 2014

A222528 O.g.f.: Sum_{n>=0} (n^8)^n * exp(-n^8*x) * x^n / n!.

Original entry on oeis.org

1, 1, 32767, 47063200806, 768305500780164501, 75740854251732106906082250, 31154086963475828638359480518580526, 41929298560838945526242744414099901692285884, 155440114706926165785630654089245708839702615196926765, 1396002062838446082394548660243302585983358463911636390911298400
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 32767*x^2 + 47063200806*x^3 + 768305500780164501*x^4 +...+ Stirling2(8*n, n)*x^n +...
where
A(x) = 1 + 1^8*x*exp(-1^8*x) + 2^16*exp(-2^8*x)*x^2/2! + 3^24*exp(-3^8*x)*x^3/3! + 4^32*exp(-4^8*x)*x^4/4! + 5^40*exp(-5^8*x)*x^5/5! +...
is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[8*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
  • PARI
    {a(n)=polcoeff(sum(k=0, n, (k^8)^k*exp(-k^8*x +x*O(x^n))*x^k/k!), n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^8)^k*x^k/(1+k^8*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(7*n))), 7*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(8*n, n)}
    for(n=0, 12, print1(a(n), ", "))

Formula

a(n) = Stirling2(8*n, n).
a(n) = [x^(8*n)] (8*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(7*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^8)^k*x^k / (1 + k^8*x)^(k+1).
a(n) ~ n^(7*n) * 8^(8*n) / (sqrt(2*Pi*(1-c)*n) * exp(7*n) * (8-c)^(7*n) * c^n), where c = -LambertW(-8*exp(-8)). - Vaclav Kotesovec, May 11 2014
Showing 1-10 of 22 results. Next