cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A386636 Triangle read by rows where T(n,k) is the number of inseparable type set partitions of {1..n} into k blocks.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 21, 15, 0, 0, 0, 0, 1, 28, 21, 0, 0, 0, 0, 0, 1, 92, 196, 56, 0, 0, 0, 0, 0, 1, 129, 288, 84, 0, 0, 0, 0, 0, 0, 1, 385, 1875, 1380, 210, 0, 0, 0, 0, 0, 0, 1, 561, 2860, 2145, 330, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2025

Keywords

Comments

A set partition is of inseparable type iff the underlying set has no permutation whose adjacent elements always belong to different blocks. Note that this only depends on the sizes of the blocks.
A set partition is also of inseparable type iff its greatest block size is at least 2 more than the sum of all its other block sizes.
This is different from inseparable partitions (A325535) and partitions of inseparable type (A386638 or A025065).

Examples

			Row n = 6 counts the following set partitions:
  .  {123456}  {1}{23456}  {1}{2}{3456}  .  .  .
               {12}{3456}  {1}{2345}{6}
               {13}{2456}  {1}{2346}{5}
               {14}{2356}  {1}{2356}{4}
               {15}{2346}  {1}{2456}{3}
               {16}{2345}  {1234}{5}{6}
               {1234}{56}  {1235}{4}{6}
               {1235}{46}  {1236}{4}{5}
               {1236}{45}  {1245}{3}{6}
               {1245}{36}  {1246}{3}{5}
               {1246}{35}  {1256}{3}{4}
               {1256}{34}  {1345}{2}{6}
               {1345}{26}  {1346}{2}{5}
               {1346}{25}  {1356}{2}{4}
               {1356}{24}  {1456}{2}{3}
               {1456}{23}
               {12345}{6}
               {12346}{5}
               {12356}{4}
               {12456}{3}
               {13456}{2}
Triangle begins:
    0
    0    0
    0    1    0
    0    1    0    0
    0    1    4    0    0
    0    1    5    0    0    0
    0    1   21   15    0    0    0
    0    1   28   21    0    0    0    0
    0    1   92  196   56    0    0    0    0
    0    1  129  288   84    0    0    0    0    0
    0    1  385 1875 1380  210    0    0    0    0    0
		

Crossrefs

For separable partitions we have A386583, sums A325534, ranks A335433.
For inseparable partitions we have A386584, sums A325535, ranks A335448.
For separable type partitions we have A386585, sums A336106, ranks A335127.
For inseparable type partitions we have A386586, sums A386638 or A025065, ranks A335126.
Row sums are A386634.
The complement is counted by A386635, row sums A386633.
A000110 counts set partitions, row sums of A048993.
A000670 counts ordered set partitions.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A279790 counts disjoint families on strongly normal multisets.
A335434 counts separable factorizations, inseparable A333487.
A336103 counts normal separable multisets, inseparable A336102.
A386587 counts disjoint families of strict partitions of each prime exponent.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&]
    Table[Length[Select[sps[Range[n]],Length[#]==k&&stnseps[#]=={}&]],{n,0,5},{k,0,n}]

A106533 The rumor constant: decimal expansion of the number x defined by x*e^(2 - 2*x) = 1.

Original entry on oeis.org

2, 0, 3, 1, 8, 7, 8, 6, 9, 9, 7, 9, 9, 7, 9, 9, 5, 3, 8, 3, 8, 4, 7, 9, 0, 6, 2, 0, 6, 2, 4, 1, 9, 8, 7, 9, 1, 0, 5, 4, 9, 8, 7, 8, 7, 5, 9, 0, 5, 7, 0, 3, 1, 7, 5, 0, 0, 2, 4, 7, 7, 4, 4, 1, 5, 1, 9, 5, 7, 5, 0, 7, 5, 9, 1, 9, 0, 6, 0, 2, 4, 8, 8, 3, 6, 2, 5, 0, 3, 6, 1, 6, 9, 0, 7, 7, 9, 6, 4, 2, 9, 1, 4, 6, 9
Offset: 0

Views

Author

Robert G. Wilson v, May 03 2005

Keywords

Examples

			c = 0.20318786997997995383847906206241987910549878759057031750024774...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ -ProductLog[ -2/E^2]/2, 10, 111][[1]]
    RealDigits[x/.FindRoot[x E^(2-2x)==1,{x,2},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Jul 05 2025 *)
  • PARI
    solve(x=0, 0.5, x*exp(2-2*x)-1) \\ Michel Marcus, Mar 13 2016

Formula

Solution to x*exp(2 - 2*x) = 1 with x not equal to 1.
Equals -1/2*LambertW(-2*exp(-2)). - Vladeta Jovovic, May 30 2005
Constant c satisfies: exp(c*x)/(1-2*c) = Sum_{n>=0} (x + 2*n)^n * exp(-2*n)/n!. - Paul D. Hanna, Mar 12 2016
Equals (2-A256500)/2. - Miko Labalan, Dec 18 2024

A129505 Number of permutations of 2n-1 objects with exactly n cycles.

Original entry on oeis.org

1, 3, 35, 735, 22449, 902055, 44990231, 2681453775, 185953177553, 14710753408923, 1307535010540395, 129006659818331295, 13990945200239106865, 1654339178844590073615, 211821088794711294496815, 29197210605623737977801375, 4310704065427058593776844065
Offset: 1

Views

Author

Paul D. Hanna, Apr 18 2007

Keywords

Crossrefs

Programs

  • Haskell
    a129505 n = abs $ a008275 (2 * n - 1) n -- Reinhard Zumkeller, Mar 02 2014
    
  • Mathematica
    t[n_] := SymmetricPolynomial[n, Range[1, 2 n]]
    Table[t[n], {n, 1, 6}]  (* A129505 *)
    (* Clark Kimberling, Dec 30 2011 *)
    Table[Abs[StirlingS1[2*n-1, n]], {n, 1, 20}] (* Vaclav Kotesovec, Dec 28 2013 *)
  • Maxima
    a(n):=((2*n+1)*(-1)^n*((sum((stirling1(2*i-1,i)*binomial(2*n,2*i-1)* stirling1(2*(n-i)+1,n-i))/((n-i)*binomial(n,i)),i,1,n-1)) -n*stirling1(2*n-1,n) +stirling1(2*n,n)))/(n+1); /* Vladimir Kruchinin, Feb 28 2013 */
    
  • Maxima
    a(n):=coeff(expand(product(x+i,i,1,2*(n-1))),x,(n-1)); /* Lorraine Lee, Oct 12 2019 */
    
  • PARI
    a(n)=polcoeff(prod(k=0,2*n-2,1+k*x),n-1)
    
  • PARI
    vector(66, n, abs( stirling(2*n-1, n, 1) ) ) /* Joerg Arndt, Jun 09 2012 */
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A129505(n): return stirling((n<<1)-1,n,kind=1) # Chai Wah Wu, Jun 08 2025

Formula

Unsigned central Stirling numbers of the first kind:
G.f.: A(x) = Sum_{n>=0} a(n)*(2*n-1)!/n!*x^n = B'(x), where B(x) satisfies B(x)^2 = x*log(1/(1-B(x))). - Vladimir Kruchinin, Jun 10 2012
a(n) = ((2*n+1)*(-1)^n*((Sum_{i=1..n-1} (Stirling1(2*i-1,i)*C(2*n,2*i-1)*Stirling1(2*(n-i)+1,n-i))/((n-i)*C(n,i)))-n*Stirling1(2*n-1,n) + Stirling1(2*n,n)))/(n+1). - Vladimir Kruchinin, Feb 28 2013
a(n) ~ (1+2*c)/(8*c*sqrt(Pi*(-1-c))) * (-8*c^2/(exp(1)*(1+2*c)))^n * n^(n-3/2), where c = LambertW(-1,-1/(2*exp(1/2))). - Vaclav Kotesovec, Dec 28 2013
a(n) = abs(C(2*n-1,n-1)*Sum_{i=1..n-1} (Stirling1(n-1,n-i-1)*Stirling1(n,i+1)/C(n-1,i))). - Chai Wah Wu, Jun 08 2025

Extensions

Minor edits by Vaclav Kotesovec, Mar 31 2014

A233734 Central terms of triangles A019538 and A090582.

Original entry on oeis.org

1, 6, 150, 8400, 834120, 129230640, 28805736960, 8734434508800, 3457819037312640, 1732015476199008000, 1070842073499515116800, 800968643959240044288000, 712900933001021056900608000, 744602794912654938776355840000, 901893717412811100821094451200000
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2013

Keywords

Comments

a(n) = A019538(2*n-1,n) = A090582(2*n-1,n).

Programs

  • Haskell
    a233734 n = a019538 (2 * n - 1) n

Formula

a(n) = A129506(n) * n!.

A258170 T(n,k) = (1/k!) * Sum_{i=0..k} (-1)^(k-i) * C(k,i) * A185651(n,i); triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 8, 6, 1, 0, 5, 15, 25, 10, 1, 0, 6, 36, 91, 65, 15, 1, 0, 7, 63, 301, 350, 140, 21, 1, 0, 8, 136, 972, 1702, 1050, 266, 28, 1, 0, 9, 261, 3027, 7770, 6951, 2646, 462, 36, 1, 0, 10, 530, 9355, 34115, 42526, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  0,  1;
  0,  2,   1;
  0,  3,   3,    1;
  0,  4,   8,    6,     1;
  0,  5,  15,   25,    10,     1;
  0,  6,  36,   91,    65,    15,     1;
  0,  7,  63,  301,   350,   140,    21,    1;
  0,  8, 136,  972,  1702,  1050,   266,   28,   1;
  0,  9, 261, 3027,  7770,  6951,  2646,  462,  36,  1;
  0, 10, 530, 9355, 34115, 42526, 22827, 5880, 750, 45, 1;
		

Crossrefs

Columns k=0-1 give: A000004, A000027.
Row sums give A258171.
Main diagonal gives A057427.
T(2*n+1,n+1) gives A129506(n+1).

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember;
          add(phi(d)*k^(n/d), d=divisors(n))
        end:
    T:= (n, k)-> add((-1)^(k-i)*binomial(k, i)*A(n, i), i=0..k)/k!:
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = DivisorSum[n, EulerPhi[#]*k^(n/#)&];
    T[n_, k_] := Sum[(-1)^(k-i)*Binomial[k, i]*A[n, i], {i, 0, k}]/k!; T[0, 0] = 0;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 25 2017, translated from Maple *)
  • Sage
    # uses[DivisorTriangle from A327029]
    DivisorTriangle(euler_phi, stirling_number2, 10) # Peter Luschny, Aug 24 2019

Formula

T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) * C(k,i) * A185651(n,i).
From Petros Hadjicostas, Sep 07 2018: (Start)
Conjecture 1: T(n,k) = Stirling2(n,k) for k >= 1 and k <= n <= 2*k - 1.
Conjecture 2: T(n,k) = Stirling2(n,k) for k >= 2 and n prime >= 2.
Here, Stirling2(n,k) = A008277(n,k).
(End)

A274713 Number of partitions of a {3*n-1}-set into n nonempty subsets.

Original entry on oeis.org

1, 15, 966, 145750, 40075035, 17505749898, 11143554045652, 9741955019900400, 11201516780955125625, 16392038075086211019625, 29749840488672593296243236, 65580126734167548918100615020, 172597131674172062132363512309613, 534584200037719212882636004559739000, 1924887533450780657560944228447179522880, 7973126100358260458973226689851075932667520, 37645241791600906804871080818625037726247519045
Offset: 1

Views

Author

Paul D. Hanna, Jul 03 2016

Keywords

Comments

a(n) is divisible by the triangular numbers: a(n) / (n*(n+1)/2) = A274712(n).

Examples

			O.g.f.: A(x) = x + 15*x^2 + 966*x^3 + 145750*x^4 + 40075035*x^5 + 17505749898*x^6 + 11143554045652*x^7 + 9741955019900400*x^8 +...
where
A(x) = exp(-x)*x + 2^5*exp(-2^3*x)*x^2/2! + 3^8*exp(-3^3*x)*x^3/3! + 4^11*exp(-4^3*x)*x^4/4! + 5^14*exp(-5^3*x)*x^5/5! + 6^17*exp(-6^3*x)*x^6/6! + 7^20*exp(-7^3*x)*x^7/7! + 8^23*exp(-8^3*x)*x^8/8! +...+ n^(3*n-1)*exp(-n^3*x)*x^n/n! +...
simplifies to an integer series.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[3*n - 1, n], {n, 1, 20}] (* Vaclav Kotesovec, Jul 06 2016 *)
  • PARI
    {a(n) = abs( stirling(3*n-1, n, 2) )}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = 1/n! * sum(k=0, n, (-1)^(n-k) * binomial(n, k) * k^(3*n-1))}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = polcoeff( 1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n-1)}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = polcoeff( sum(m=1, n, m^(3*m-1) * x^m * exp(-m^3*x +x*O(x^n))/m!), n)}
    for(n=1, 20, print1(a(n), ", "))

Formula

O.g.f.: Sum_{n>=1} n^(3*n-1) * exp(-n^3*x) * x^n / n!, an integer series.
a(n) = A008277(3*n-1,n) for n>=1, where A008277 are the Stirling numbers of the second kind.
a(n) = 1/n! * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * k^(3*n-1).
a(n) = [x^(2*n-1)] 1 / Product_{k=1..n} (1 - k*x).
a(n) ~ 3^(3*n-1) * n^(2*n-3/2) / (exp(2*n) * c^n * (3-c)^(2*n-1) * sqrt(2*Pi*(1-c))), where c = -LambertW(-3*exp(-3)) = 0.1785606278779211065968... = -A226750. - Vaclav Kotesovec, Jul 06 2016

A383869 a(n) = [x^n] 1/Product_{k=0..n} (1 - (n+k)*x).

Original entry on oeis.org

1, 3, 55, 1890, 95781, 6427575, 537306484, 53791898160, 6275077781973, 835898091070185, 125195263380478655, 20825548503275385870, 3809430011164368694260, 759987002381075483922180, 164221938436980055710082200, 38209754165858724861944820000, 9524153723280871205135022364485
Offset: 0

Views

Author

Seiichi Manyama, May 13 2025

Keywords

Crossrefs

Central terms of triangle A143395.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Product[(1 - (n + k)*x), {k, 0, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 17 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(n+k)^(2*n)*binomial(n, k))/n!;

Formula

a(n) = (1/n!) * Sum_{k=0..n} (-1)^(n-k) * (n+k)^(2*n) * binomial(n,k).
a(n) = Sum_{k=0..n} n^(n-k) * binomial(2*n,n+k) * Stirling2(n+k,n).
a(n) = Sum_{k=0..n} (-1)^k * (2*n)^(n-k) * binomial(2*n,n+k) * Stirling2(n+k,n).
a(n) ~ (r-1)^((r-1)*n) * (1+r)^(2*n + 1) * exp(n) * n^(n - 1/2) / (sqrt(2*Pi*(1 + (4-r)*r)) * r^(r*n)), where r = 2.106565648173949260853515992430777519716829316322... is the root of the equation exp(2/(1+r)) = r/(r-1). - Vaclav Kotesovec, May 17 2025

A343278 a(n) = Stirling2(n, ceiling(n/2)).

Original entry on oeis.org

1, 1, 1, 3, 7, 25, 90, 350, 1701, 6951, 42525, 179487, 1323652, 5715424, 49329280, 216627840, 2141764053, 9528822303, 106175395755, 477297033785, 5917584964655, 26826851689001, 366282500870286, 1672162773483930, 24930204590758260, 114485073343744260
Offset: 0

Views

Author

Peter Luschny, Apr 20 2021

Keywords

Comments

Number of partitions of an n-set into ceiling(n/2) nonempty subsets.

Crossrefs

Bisection gives A007820 (even part),

Programs

  • Mathematica
    Table[StirlingS2[n, Ceiling[n/2]], {n, 0, 25}] (* Amiram Eldar, Apr 20 2021 *)
  • PARI
    a(n) = stirling(n, ceil(n/2), 2); \\ Michel Marcus, Apr 20 2021

A343279 a(n) = Stirling2(n, floor(n/2)).

Original entry on oeis.org

1, 0, 1, 1, 7, 15, 90, 301, 1701, 7770, 42525, 246730, 1323652, 9321312, 49329280, 408741333, 2141764053, 20415995028, 106175395755, 1144614626805, 5917584964655, 71187132291275, 366282500870286, 4864251308951100, 24930204590758260, 362262620784874680
Offset: 0

Views

Author

Peter Luschny, Apr 20 2021

Keywords

Comments

Number of partitions of an n-set into floor(n/2) nonempty subsets.

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[n, Floor[n/2]], {n, 0, 25}] (* Amiram Eldar, Apr 20 2021 *)
  • PARI
    a(n) = stirling(n, n\2, 2); \\ Michel Marcus, Apr 20 2021

A226703 Triangle read by rows: T(n,k) = binomial(2*n,k)*Stirling2(2*n-k,n).

Original entry on oeis.org

1, 1, 2, 7, 12, 6, 90, 150, 90, 20, 1701, 2800, 1820, 560, 70, 42525, 69510, 47250, 16800, 3150, 252, 1323652, 2153844, 1506582, 582120, 131670, 16632, 924, 49329280, 80015936, 57093036, 23291268, 5885880, 924924, 84084, 3432, 2141764053, 3466045440, 2509478400, 1063782720, 289429140, 51891840, 6006000, 411840, 12870
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 15 2013

Keywords

Comments

Polynomials based on Extended Tepper's Identity
P(n,x)=sum(j=0..n, (-1)^(n-j)*binomial(n,j)*(x+j)^(2*n))/n!.
P(n,x)=sum(j=0..n, binomial(2*n,j)*stirling2(2*n-j,n)*x^j).
P(n,1)=A129506(n).

Examples

			1,
1 +2*x,
7 +12*x +6*x^2,
90 +150*x +90*x^2 +20*x^3,
1701 +2800*x +1820*x^2 +560*x^3 +70*x^4.
		

References

  • G. P. Egorychev. “Integral Representation and the Computation of Combinatorial Sums.” Translations of Mathematical Monographs, Vol. 59, American Mathematical Society, (1984).
  • F. J. Papp. “Another Proof of Tepper’s Inequality.” Math. Magazine 45 (1972): 119-121.

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Binomial[2n,k]StirlingS2[2n-k,n],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 19 2013 *)

Formula

T(n,k) = binomial(2*n,k)*stirling2(2*n-k,n).
T(n,n) = A000984(n).
T(n,0) = A007820(n).
Showing 1-10 of 10 results.