A238685
a(n) = n! * A129505(n) * (-1)^(n+1).
Original entry on oeis.org
1, -6, 210, -17640, 2693880, -649479600, 226750764240, -108116216208000, 67478689070432640, -53382381970299782400, 52192613508738839136000, -61794396463636399635072000, 87121906773549083421777792000, -144222462676882552982237906688000
Offset: 1
-
a238685 n = a000142 n * a008275 (2 * n - 1) n
-
Array[#!*StirlingS1[2 # - 1, #] &, 14] (* Michael De Vlieger, Jan 24 2022 *)
-
a(n) = n!*stirling(2*n-1,n, 1); \\ Michel Marcus, Jan 24 2022
-
from math import factorial
from sympy.functions.combinatorial.numbers import stirling
def A238685(n): return factorial(n)*stirling((n<<1)-1,n,kind=1,signed=True) # Chai Wah Wu, Jun 09 2025
A130534
Triangle T(n,k), 0 <= k <= n, read by rows, giving coefficients of the polynomial (x+1)(x+2)...(x+n), expanded in increasing powers of x. T(n,k) is also the unsigned Stirling number |s(n+1, k+1)|, denoting the number of permutations on n+1 elements that contain exactly k+1 cycles.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 11, 6, 1, 24, 50, 35, 10, 1, 120, 274, 225, 85, 15, 1, 720, 1764, 1624, 735, 175, 21, 1, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0
Triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
n=0: 1
n=1: 1 1
n=2: 2 3 1
n=3: 6 11 6 1
n=4: 24 50 35 10 1
n=5: 120 274 225 85 15 1
n=6: 720 1764 1624 735 175 21 1
n=7: 5040 13068 13132 6769 1960 322 28 1
n=8: 40320 109584 118124 67284 22449 4536 546 36 1
n=9: 362880 1026576 1172700 723680 269325 63273 9450 870 45 1
n=10: 3628800 10628640 12753576 8409500 3416930 902055 157773 18150 1320 55 1
[Reformatted and extended by _Wolfdieter Lang_, Feb 05 2013]
T(3,2) = 6 because there are 6 permutations of {1,2,3,4} that have exactly 2 0's in their inversion vector: {1, 2, 4, 3}, {1, 3, 2, 4}, {1, 3, 4, 2}, {2, 1, 3, 4},{2, 3, 1, 4}, {2, 3, 4, 1}. The respective inversion vectors are {0, 0, 1}, {0, 1, 0}, {0, 2, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}. - _Geoffrey Critzer_, May 07 2010
T(3,1)=11 since there are exactly 11 permutations of {1,2,3,4} with exactly 2 cycles, namely, (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(143), (12)(34), (13)(24), and (14)(23). - _Dennis P. Walsh_, Jan 25 2011
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/ 1 \/1 \/1 \ / 1 \
| 1 1 ||0 1 ||0 1 | | 1 1 |
| 2 2 1 ||0 1 1 ||0 0 1 |... = | 2 3 1 |
| 6 6 3 1 ||0 2 2 1 ||0 0 1 1 | | 6 11 6 1 |
|24 24 12 4 1||0 6 6 3 1||0 0 2 2 1| |24 50 35 10 1|
|... ||... ||... | |... |
(End)
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 93-94.
- Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge University Press, 2003, pp. 69-71. [Geoffrey Critzer, May 07 2010]
- T. D. Noe, Rows n = 0..50 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 5, pp. 227-251. [From _Johannes W. Meijer_, Oct 07 2009]
- A. Chervov, Decomplexification of the Capelli identities and holomorphic factorization, arxiv 1203.5759 [math.QA], Mar 2012. [_Tom Copeland_, Apr 10 2014]
- FindStat - Combinatorial Statistic Finder, The number of saliances of the permutation, The number of cycles in the cycle decomposition of a permutation.
- Martin Griffiths, Generating Functions for Extended Stirling Numbers of the First Kind, Journal of Integer Sequences, 17 (2014), #14.6.4.
- G. Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009.
- S. Joni, G. Rota, and B. Sagan, From Sets to Functions: Three Elementary Examples, Discrete Mathematics, vol. 37, no. 2-3, pp. 193-202, 1981. [_Tom Copeland_, Apr 05 2014]
- Matthieu Josuat-Verges, A q-analog of Schläfli and Gould identities on Stirling numbers, Preprint, arXiv:1610.02965 [math.CO], 2016.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- Lucas Sá and Antonio M. García-García, The Wishart-Sachdev-Ye-Kitaev model: Q-Laguerre spectral density and quantum chaos, arXiv:2104.07647 [hep-th], 2021.
- Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
- Dennis Walsh, A short note on unsigned Stirling numbers
See
A008275, which is the main entry for these numbers;
A094638 (reversed rows).
The asymptotic expansions lead to
A000142 (n=1),
A000142(n=2; minus a(0)),
A001710 (n=3),
A001715 (n=4),
A001720 (n=5),
A001725 (n=6),
A001730 (n=7),
A049388 (n=8),
A049389 (n=9),
A049398 (n=10),
A051431 (n=11),
A008279 and
A094587.
(End)
-
a130534 n k = a130534_tabl !! n !! k
a130534_row n = a130534_tabl !! n
a130534_tabl = map (map abs) a008275_tabl
-- Reinhard Zumkeller, Mar 18 2013
-
with(combinat): A130534 := proc(n,m): (-1)^(n+m)*stirling1(n+1,m+1) end proc: seq(seq(A130534(n,m), m=0..n), n=0..10); # Johannes W. Meijer, Oct 07 2009, revised Sep 11 2012
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0 (and shifts the enumeration).
BellMatrix(n -> n!, 9); # Peter Luschny, Jan 27 2016
-
Table[Table[ Length[Select[Map[ToInversionVector, Permutations[m]], Count[ #, 0] == n &]], {n, 0, m - 1}], {m, 0, 8}] // Grid (* Geoffrey Critzer, May 07 2010 *)
rows = 10;
t = Range[0, rows]!;
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
A187646
(Signless) Central Stirling numbers of the first kind s(2n,n).
Original entry on oeis.org
1, 1, 11, 225, 6769, 269325, 13339535, 790943153, 54631129553, 4308105301929, 381922055502195, 37600535086859745, 4070384057007569521, 480544558742733545125, 61445535102359115635655, 8459574446076318147830625, 1247677142707273537964543265, 196258640868140652967646352465
Offset: 0
-
seq(abs(Stirling1(2*n,n)), n=0..20);
-
Table[Abs[StirlingS1[2n, n]], {n, 0, 12}]
N[1 + 1/(2 LambertW[-1, -Exp[-1/2]/2]), 50] (* The constant z in the asymptotic - Vladimir Reshetnikov, Oct 08 2016 *)
-
makelist(abs(stirling1(2*n,n)),n,0,12);
-
for(n=0,50, print1(abs(stirling(2*n, n, 1)), ", ")) \\ G. C. Greubel, Nov 09 2017
A129506
Number of partitions of a {2n-1}-set into n nonempty subsets.
Original entry on oeis.org
1, 3, 25, 350, 6951, 179487, 5715424, 216627840, 9528822303, 477297033785, 26826851689001, 1672162773483930, 114485073343744260, 8541149231801585700, 689692892575539953400, 59932861644880019603520, 5576731051262006158950735, 553234633385550257808059085
Offset: 1
G.f.: A(x) = x + 3*x^2 + 25*x^3 + 350*x^4 + 6951*x^5 + 179487*x^6 + ... where A(x) = 1^1*x*exp(-1^2*x) + 2^3*exp(-2^2*x)*x^2/2! + 3^5*exp(-3^2*x)*x^3/3! + 4^7*exp(-4^2*x)*x^4/4! + 5^9*exp(-5^2*x)*x^5/5! + ... forms a power series in x with integer coefficients. - _Paul D. Hanna_, Oct 15 2012
-
a:= n-> Stirling2(2*n-1, n):
seq(a(n), n=1..25); # Alois P. Heinz, Dec 15 2013
-
a[n_] := Sum[ Binomial[2*n - 2, j]*StirlingS2[2*n - j - 2, n-1], {j, 0, n-1}]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Jun 14 2013, after Vladimir Kruchinin *)
Table[StirlingS2[2*n-1,n], {n, 1, 20}] (* Vaclav Kotesovec, Dec 15 2013 *)
-
a(n):=((2*n-1)*((sum((stirling2(2*i-1, i)*binomial(2*n-2, 2*i-1)*stirling2(2*(n-i)-1, n-i-1))/((n-i-1)*binomial(n-1, i)), i, 1, n-2))+(n-1)* stirling2(2*n-3, n-1)+stirling2(2*n-2, n-1)))/(n);
makelist(a(n),n,1,10); /* Vladimir Kruchinin, Feb 28 2013 */
-
a(n)=polcoeff(1/prod(k=1,n,1-k*x +x*O(x^n)),n-1)
-
vector(66, n, abs( stirling(2*n-1, n, 2) ) ) /* Joerg Arndt, Jun 09 2012 */
-
{a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^(2*n-1))} \\ Paul D. Hanna, Oct 15 2012
-
{a(n)=polcoeff(sum(m=1,n,m^(2*m-1)*x^m*exp(-m^2*x+x*O(x^n))/m!),n)}
for(n=1,20,print1(a(n),", "))
A234324
Central terms of the triangle of central factorial numbers (A008955).
Original entry on oeis.org
1, 5, 273, 44473, 14739153, 8261931405, 7026231453265, 8439654758970225, 13611213226804376865, 28383081191068916580565, 74326386672885754888959569, 238812235698229573137588936105, 923793013650701305781038113833585, 4235104161629281000608041716747118685
Offset: 0
-
a234324 n = a008955 (2 * n) n
-
b:= proc(n, k) option remember; `if`(k=0, 1,
add(b(j-1, k-1)*j^2, j=1..n))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..14); # Alois P. Heinz, Feb 19 2022
-
Flatten[{1, Table[Coefficient[Expand[Product[1 + k^2*x, {k, 0, 2*n}]], x^n], {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 28 2017 *)
Table[Sum[(-1)^(n-j) * StirlingS1[2*n+1, 2*n+1-j] * StirlingS1[2*n+1, j+1], {j, 0, 2*n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 28 2017 *)
A348084
a(n) = [x^n] Product_{k=1..2*n} 1/(1 - k * x).
Original entry on oeis.org
1, 3, 65, 2646, 159027, 12662650, 1256328866, 149304004500, 20677182465555, 3270191625210510, 581535955088511150, 114860168436414644100, 24947615188488584876910, 5909902157669174347277556, 1516413100622001261250104100, 418965782063742792530650053000
Offset: 0
-
a(n) = polcoef(1/prod(k=1, 2*n, 1-k*x+x*O(x^n)), n);
-
a(n) = stirling(3*n, 2*n, 2);
-
a(n) = sum(k=0, 2*n, (-1)^k*k^(3*n)*binomial(2*n, k))/(2*n)!;
-
from sympy.functions.combinatorial.numbers import stirling
def A348084(n): return stirling(3*n,2*n) # Chai Wah Wu, Jun 09 2025
A348024
a(n) = [x^n] Product_{k=1..2*n} (x + (-1)^k * k).
Original entry on oeis.org
1, 1, -13, -87, 2609, 34965, -1638841, -33411007, 2128380881, 58501278297, -4709853961605, -163166745402375, 15875893807564465, 664163782026582877, -75766955207796981345, -3716140360596415682175, 486265092408065178623265, 27363821966293458296896305, -4039473192629570940395992765
Offset: 0
A226057
E.g.f. A(x) satisfies: A(x)^2 = -x*log(1-A(x)) where A(x) = Sum_{n>=1} a(n)*x^n/n!^2.
Original entry on oeis.org
1, 2, 21, 504, 21380, 1405800, 132139140, 16801276800, 2775758497344, 577868994460800, 147973478687496000, 45703277816543424000, 16753246307626306832640, 7190163806348621417679360, 3571395525388698501285792000
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2!^2 + 21*x^3/3!^2 + 504*x^4/4!^2 + 21380*x^5/5!^2 +...
where
A(x)^2 = 2*x^2/2! + 6*x^3/3! + 34*x^4/4! + 280*x^5/5! + 3013*x^6/6! + 39963*x^7/7! + 629541*x^8/8! +...
and
-log(1-A(x)) = 2*x/2! + 6*x^2/3! + 34*x^3/4! + 280*x^4/5! + 3013*x^5/6! +...
-
{a(n)=polcoeff(prod(k=0, 2*n-2, 1+k*x), n-1)*n!^2*(n-1)!/(2*n-1)!}
-
from math import factorial, comb
from sympy.functions.combinatorial.numbers import stirling
def A226057(n): return factorial(n)*stirling(m:=(n<<1)-1,n,kind=1)//comb(m,n-1) # Chai Wah Wu, Jun 08 2025
Showing 1-8 of 8 results.
Comments