cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A008955 Triangle of central factorial numbers |t(2n,2n-2k)| read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 4, 1, 14, 49, 36, 1, 30, 273, 820, 576, 1, 55, 1023, 7645, 21076, 14400, 1, 91, 3003, 44473, 296296, 773136, 518400, 1, 140, 7462, 191620, 2475473, 15291640, 38402064, 25401600, 1, 204, 16422, 669188, 14739153, 173721912, 1017067024, 2483133696, 1625702400
Offset: 0

Views

Author

Keywords

Comments

Discussion of Central Factorial Numbers by N. J. A. Sloane, Feb 01 2011: (Start)
Here is Riordan's definition of the central factorial numbers t(n,k) given in Combinatorial Identities, Section 6.5:
For n >= 0, expand the polynomial
x^[n] = x*Product{i=1..n-1} (x+n/2-i) = Sum_{k=0..n} t(n,k)*x^k.
The t(n,k) are not always integers. The cases n even and n odd are best handled separately.
For n=2m, we have:
x^[2m] = Product_{i=0..m-1} (x^2-i^2) = Sum_{k=1..m} t(2m,2k)*x^(2k).
E.g. x^[8] = x^2(x^2-1^2)(x^2-2^2)(x^2-3^2) = x^8-14x^6+49x^4-36x^2,
which corresponds to row 4 of the present triangle.
So the m-th row of the present triangle gives the absolute values of the coefficients in the expansion of Product_{i=0..m-1} (x^2-i^2).
Equivalently, and simpler, the n-th row gives the coefficients in the expansion of Product_{i=1..n-1}(x+i^2), highest powers first.
For n odd, n=2m+1, we have:
x^[2m+1] = x*Product_{i=0..m-1}(x^2-((2i+1)/2)^2) = Sum_{k=0..m} t(2m+1,2k+1)*x^(2k+1).
E.g. x^[5] = x(x^2-(1/2)^2)(x^2-(3/2)^2) = x^5-10x^3/4+9x/16,
which corresponds to row 2 of the triangle in A008956.
We now rescale to get integers by replacing x by x/2 and multiplying by 2^(2m+1) (getting 1, -10, 9 from the example).
The result is that row m of triangle A008956 gives the coefficients in the expansion of x*Product_{i=0..m} (x^2-(2i+1)^2).
Equivalently, and simpler, the n-th row of A008956 gives the coefficients in the expansion of Product_{i=0..n-1} (x+(2i+1)^2), highest powers first.
Note that the n-th row of A182867 gives the coefficients in the expansion of Product_{i=1..n} (x+(2i)^2), highest powers first.
(End)
Contribution from Johannes W. Meijer, Jun 18 2009: (Start)
We define Beta(n-z,n+z)/Beta(n,n) = Gamma(n-z)*Gamma(n+z)/Gamma(n)^2 = sum(EG2[2m,n]*z^(2m), m = 0..infinity) with Beta(z,w) the Beta function. The EG2[2m,n] coefficients are quite interesting, see A161739. Our definition leads to EG2[2m,1] = 2*eta(2m) and the recurrence relation EG2[2m,n] = EG2[2m,n-1] - EG2[2m-2,n-1]/(n-1)^2 for m = -2, -1, 0, 1, 2, ... and n = 2, 3, ... , with eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. We found for the matrix coefficients EG2[2m,n] = sum((-1)^(k+n)*t1(n-1,k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2,k=1..n) with the central factorial numbers t1(n,m) as defined above, see also the Maple program.
From the EG2 matrix we arrive at the ZG2 matrix, see A161739 for its odd counterpart, which is defined by ZG2[2m,1] = 2*zeta(2m) and the recurrence relation ZG2[2m,n] = ZG2[2m-2,n-1]/(n*(n-1))-(n-1)*ZG2[2m,n-1]/n for m = -2, -1, 0, 1, 2, ... and n = 2, 3, ... . We found for the ZG2[2m,n] = Sum_{k=1..n} (-1)^(k+1)*t1(n-1,k-1)* 2* zeta(2*m-2*n+2*k)/((n-1)!*(n)!), and we see that the central factorial numbers t1(n,m) once again play a crucial role.
(End)

Examples

			Triangle begins:
  1;
  1,   1;
  1,   5,   4;
  1,  14,  49,  36;
  1,  30, 273, 820, 576;
  ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

Crossrefs

Cf. A036969.
Columns include A000330, A000596, A000597. Right-hand columns include A001044, A001819, A001820, A001821. Row sums are in A101686.
Appears in A160464 (Eta triangle), A160474 (Zeta triangle), A160479 (ZL(n)), A161739 (RSEG2 triangle), A161742, A161743, A002195, A002196, A162440 (EG1 matrix), A162446 (ZG1 matrix) and A163927. - Johannes W. Meijer, Jun 18 2009, Jul 06 2009 and Aug 17 2009
Cf. A234324 (central terms).

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return 1;
        elif k=n then return (Factorial(n))^2;
        else return n^2*T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..8], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 14 2019
  • Haskell
    a008955 n k = a008955_tabl !! n !! k
    a008955_row n = a008955_tabl !! n
    a008955_tabl = [1] : f [1] 1 1 where
       f xs u t = ys : f ys v (t * v) where
         ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
         v = u + 1
    -- Reinhard Zumkeller, Dec 24 2013
    
  • Magma
    T:= func< n,k | Factorial(2*(n+1))*(&+[(-1)^j*Binomial(n,k-j)*(&+[2^(m-2*k)*StirlingFirst(2*(n-k+1)+m, 2*(n-k+1))*Binomial(2*(n-k+1)+2*j-1, 2*(n-k+1)+m-1)/Factorial(2*(n-k+1)+m): m in [0..2*j]]): j in [0..k]]) >;
    [T(n,k): k in [0..n], n in [0..8]]; // G. C. Greubel, Sep 14 2019
    
  • Maple
    nmax:=7: for n from 0 to nmax do t1(n, 0):=1: t1(n, n):=(n!)^2 end do: for n from 1 to nmax do for k from 1 to n-1 do t1(n, k) := t1(n-1, k-1)*n^2 + t1(n-1, k) end do: end do: seq(seq(t1(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
    t1 := proc(n,k)
            sum((-1)^j*stirling1(n+1,n+1-k+j)*stirling1(n+1,n+1-k-j),j=-k..k) ;
    end proc: # Mircea Merca, Apr 02 2012
    # third Maple program:
    T:= proc(n, k) option remember; `if`(k=0, 1,
          add(T(j-1, k-1)*j^2, j=1..n))
        end:
    seq(seq(T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    t[n_, 0]=1; t[n_, n_]=(n!)^2; t[n_ , k_ ]:=t[n, k] = n^2*t[n-1, k-1] + t[n-1, k]; Flatten[Table[t[n, k], {n,0,8}, {k,0,n}] ][[1 ;; 42]]
    (* Jean-François Alcover, May 30 2011, after recurrence formula *)
  • Maxima
    T(n,m):=(2*(n+1))!*sum((-1)^k*binomial(n,m-k)*sum((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1,2*(n-m+1)+i-1))/(2*(n-m+1)+i)!,i,0,2*k),k,0,m); /* Vladimir Kruchinin, Oct 05 2013 */
    
  • PARI
    T(n,k)=if(k==0,1, if(k==n, (n!)^2, n^2*T(n-1, k-1) + T(n-1, k)));
    for(n=0,8, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 14 2019
    
  • Sage
    # This triangle is (0,0)-based.
    def A008955(n, k) :
        if k==0 : return 1
        if k==n : return factorial(n)^2
        return n^2*A008955(n-1, k-1) + A008955(n-1, k)
    for n in (0..7) : print([A008955(n, k) for k in (0..n)]) # Peter Luschny, Feb 04 2012
    

Formula

The n-th row gives the coefficients in the expansion of Product_{i=1..n-1}(x+i^2), highest powers first (see Comments section).
The triangle can be obtained from the recurrence t1(n,k) = n^2*t1(n-1,k-1) + t1(n-1,k) with t1(n,0) = 1 and t1(n,n) = (n!)^2.
t1(n,k) = Sum_{j=-k..k} (-1)^j*s(n+1,n+1-k+j)*s(n+1,n+1-k-j) = Sum_{j=0..2*(n+1-k)} (-1)^(n+1-k+j)*s(n+1,j)*s(n+1,2*(n+1-k)-j), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 02 2012
E.g.f.: cosh(2/sqrt(t)*asin(sqrt(t)*z/2)) = 1 + z^2/2! + (1 + t)*z^4/4! + (1 + 5*t + 4*t^2)*z^6/6! + ... (see Berndt, p.263 and p.306). - Peter Bala, Aug 29 2012
T(n,m) = (2*(n+1))!*Sum_{k=0..m} ((-1)^k*binomial(n,m-k)*Sum_{i=0..2*k} ((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1, 2*(n-m+1)+i-1))/(2*(n-m+1)+i)!)). - Vladimir Kruchinin, Oct 05 2013

Extensions

There's an error in the last column of Riordan's table (change 46076 to 21076).
More terms from Vladeta Jovovic, Apr 16 2000
Link added and cross-references edited by Johannes W. Meijer, Aug 17 2009
Discussion of Riordan's definition of central factorial numbers added by N. J. A. Sloane, Feb 01 2011

A204579 Triangle read by rows: matrix inverse of the central factorial numbers T(2*n, 2*k) (A036969).

Original entry on oeis.org

1, -1, 1, 4, -5, 1, -36, 49, -14, 1, 576, -820, 273, -30, 1, -14400, 21076, -7645, 1023, -55, 1, 518400, -773136, 296296, -44473, 3003, -91, 1, -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1, 1625702400, -2483133696, 1017067024, -173721912, 14739153, -669188, 16422, -204, 1
Offset: 1

Views

Author

M. F. Hasler, Feb 03 2012

Keywords

Comments

This is a signed version of A008955 with rows in reverse order. - Peter Luschny, Feb 04 2012

Examples

			Triangle starts:
  [1]         1;
  [2]        -1,        1;
  [3]         4,       -5,         1;
  [4]       -36,       49,       -14,       1;
  [5]       576,     -820,       273,     -30,       1;
  [6]    -14400,    21076,     -7645,    1023,     -55,    1;
  [7]    518400,  -773136,    296296,  -44473,    3003,  -91,    1;
  [8] -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1;
		

Crossrefs

Cf. A036969, A008955, A008275, A121408, A001044 (column 1), A101686 (alternating row sums), A234324 (central terms).

Programs

  • Maple
    # From Peter Luschny, Feb 29 2024: (Start)
    ogf := n -> local j; z^2*mul(z^2 - j^2, j = 1..n-1):
    Trow := n -> local k; seq(coeff(expand(ogf(n)), z, 2*k), k = 1..n):
    # Alternative:
    f := w -> (w^sqrt(t) + w^(-sqrt(t)))/2: egf := f((x/2 + sqrt(1 + (x/2)^2))^2):
    ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
    Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, k), k = 1..n):  # (End)
    # Assuming offset 0:
    rowpoly := n -> (-1)^n * pochhammer(1 - sqrt(x), n) * pochhammer(1 + sqrt(x), n):
    row := n -> local k; seq(coeff(expand(rowpoly(n)), x, k), k = 0..n):
    seq(print(row(n)), n = 0..7);  # Peter Luschny, Aug 03 2024
  • Mathematica
    rows = 10;
    t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k - j)/((k - j)!*(k + j)!), {j, 1, k}];
    T = Table[t[n, k], {n, 1, rows}, {k, 1, rows}] // Inverse;
    Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018 *)
  • PARI
    select(concat(Vec(matrix(10,10,n,k,T(n,k)/*from A036969*/)~^-1)), x->x)
    
  • Sage
    def A204579(n, k): return (-1)^(n-k)*A008955(n, n-k)
    for n in (0..7): print([A204579(n, k) for k in (0..n)]) # Peter Luschny, Feb 05 2012

Formula

T(n, k) = (-1)^(n-k)*A008955(n, n-k). - Peter Luschny, Feb 05 2012
T(n, k) = Sum_{i=k-n..n-k} (-1)^(n-k+i)*s(n,k+i)*s(n,k-i) = Sum_{i=0..2*k} (-1)^(n+i)*s(n,i)*s(n,2*k-i), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 07 2012
From Peter Bala, Aug 29 2012: (Start)
T(n, k) = T(n-1, k-1) - (n-1)^2*T(n-1, k). (Recurrence equation.)
Let E(x) = cosh(sqrt(2*x)) = Sum_{n >= 0} x^n/{(2*n)!/2^n} and
L(x) = 2*{arcsinh(sqrt(x/2))}^2 = Sum_{n >=1} (-1)^n*(n-1)!^2*x^n/{(2*n)!/2^n}.
L(x) is the compositional inverse of E(x) - 1.
A generating function for the triangle is E(t*L(x)) = 1 + t*x + t*(-1 + t)*x^2/6 + t*(4 - 5*t + t^2)*x^3/90 + ..., where the sequence of denominators [1,1,6,90,...] is given by (2*n)!/2^n. Cf. A008275 with generating function exp(t*log(1+x)).
The e.g.f. is E(t*L(x^2/2)) = cosh(2*sqrt(t)*arcsinh(x/2)) = 1 + t*x^2/2! + t*(t-1)*x^4/4! + t*(t-1)*(t-4)*x^6/6! + .... (End)
From Peter Luschny, Feb 29 2024: (Start)
T(n, k) = [z^(2*k)] z^2*Product_{j=1..n-1} (z^2 - j^2).
T(n, k) = (2*n)! * [t^k] [x^(2*n)] (w^sqrt(t) + w^(-sqrt(t)))/2 where w = (x/2 + sqrt(1 + (x/2)^2))^2. (End)
T(n, k) = [x^k] (-1)^n * Pochhammer(1 - sqrt(x), n) * Pochhammer(1 + sqrt(x), n), assuming offset 0. - Peter Luschny, Aug 03 2024
Integral_{0..oo} x^s / (cosh(x))^(2*n) dx = (2^(2*n - s - 1) * s! * (-1)^(n-1)) / (2*n - 1)!)*Sum_{k=1..n} T(n,k)*DirichletEta(s - 2*k + 2). - Ammar Khatab, Apr 11 2025

Extensions

Typo in data corrected by Peter Luschny, Feb 05 2012

A348081 a(n) = [x^n] Product_{k=1..2*n} 1/(1 - k^2 * x).

Original entry on oeis.org

1, 5, 627, 251498, 209609235, 298201326150, 646748606934510, 1986821811445598260, 8209989926930833199235, 43919039258570117113742270, 295300365118450495520630242042, 2437724587984574697761809904387340, 24239364659088896670563082403144467630
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^2*x), {k, 1, 2*n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2021 *)
  • PARI
    a(n) = polcoef(1/prod(k=1, 2*n, 1-k^2*x+x*O(x^n)), n);

Formula

a(n) ~ c * d^n * n!^2 / n^(3/2), where d = 78.52705817932973261726305432915417900827309581709564977985583533852704254... = (2+r)^6 / (r^2*(4+r)^2), where r = 0.329482909104375658581668801636329590897344... is the root of the equation 4+r = r*exp(6/(2+r)) and c = (2+r)/(Pi^(3/2)*sqrt(32 - 4*r*(4+r))) = 0.0815842039686253664272939415761688591712635596695065951780203519... - Vaclav Kotesovec, Oct 16 2021, updated May 17 2025
From Seiichi Manyama, May 13 2025: (Start)
a(n) = A036969(3*n,2*n) = A269945(3*n,2*n).
a(n) = (1/(4*n)!) * Sum_{k=0..4*n} (-1)^k * (2*n-k)^(6*n) * binomial(4*n,k).
a(n) = Sum_{k=0..2*n} (-2*n)^k * binomial(6*n,k) * Stirling2(6*n-k,4*n).
a(n) = Sum_{k=0..2*n} (-1)^k * Stirling2(2*n+k,2*n) * Stirling2(4*n-k,2*n). (End)

A346543 a(n) = [x^n] Product_{k=1..2*n} (x + (2*k-1)^2).

Original entry on oeis.org

1, 10, 1974, 1234948, 1601489318, 3541644282540, 11934462103156540, 56947950742822581960, 365458809637016986262790, 3035813466162156094097686300, 31694033885101849517370941522644, 406222401519003083851664224927890360, 6271146756206887832796744632163811733084
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2021

Keywords

Examples

			(1/3!) * (arcsin(x))^3 = x^3/3! + 10 * x^5/5! + ... . So a(1) =10.
(1/5!) * (arcsin(x))^5 = x^5/5! + 35 * x^7/7! + 1974 * x^9/9! + ... . So a(2) = 1974.
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(x + (2*k-1)^2), {k, 1, 2*n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2021 *)
  • PARI
    a(n) = polcoef(prod(k=1, 2*n, x+(2*k-1)^2), n);

Formula

a(n) = A008956(2*n,n).
a(n) = (4*n+1)! * [x^(4*n+1)] (1/(2*n+1)!) * (arcsin(x))^(2*n+1).
a(n) ~ c * d^n * n!^2 / n^(3/2), where d = 121.8904568356133798202328777176879971969471503678428704459083316116687149... and c = 0.1081647814943965981694666415038643176470488612855594762896553127... - Vaclav Kotesovec, Oct 16 2021

A384028 a(n) = Sum_{k=0..2*n} Stirling1(2*n+1, 2*n+1-k) * Stirling1(2*n+1, k+1).

Original entry on oeis.org

1, 13, 2273, 1184153, 1251320145, 2232012515445, 6032418472347265, 23007314730623658225, 117745011140615270168865, 778780810721500176081199325, 6466413475830749109197652489569, 65861328745485785925705177696147337, 807448787241269228642562251336079833585
Offset: 0

Views

Author

Vaclav Kotesovec, May 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[2*n+1, 2*n+1-j]*StirlingS1[2*n+1, j+1], {j, 0, 2*n}], {n, 0, 15}]

Formula

a(n) ~ 2^(6*n) * w^(4*n + 3/2) * n^(2*n - 1/2) / (sqrt(Pi*(w-1)) * exp(2*n) * (2*w-1)^(2*n)), where w = -LambertW(-1, -exp(-1/2)/2) = 1.756431208626169676982737616...
a(n) = A129256(2*n) = [x^(2*n)] Product_{k=0..2*n} (1 + k*x)^2. - Seiichi Manyama, May 17 2025
Showing 1-5 of 5 results.