cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A001819 Central factorial numbers: second right-hand column of triangle A008955.

Original entry on oeis.org

0, 1, 5, 49, 820, 21076, 773136, 38402064, 2483133696, 202759531776, 20407635072000, 2482492033152000, 359072203696128000, 60912644957448192000, 11977654199703478272000, 2702572249389834608640000
Offset: 0

Views

Author

Keywords

Comments

Coefficient of x^2 in Product_{k=0..n}(x + k^2). - Ralf Stephan, Aug 22 2004
p divides a(p-1) for prime p > 3. p divides a((p-1)/2) for prime p > 3. For prime p, p^2 divides a(n) for n > 2*p+1. - Alexander Adamchuk, Jul 11 2006; last comment corrected by Michel Marcus, May 20 2020
The ratio a(n)/A001044(n) is the partial sum of the reciprocals of squares. E.g., a(4)/A001044(4) = 820/576 = 1/1 + 1/4 + 1/9 + 1/16. - Pierre CAMI, Oct 30 2006
a(n) is the (n-1)-st elementary symmetric function of the squares of the first n numbers. - Anton Zakharov, Nov 06 2016
Primes p such that p^2 | a(p-1) are the Wolstenholme primes A088164. - Amiram Eldar and Thomas Ordowski, Aug 08 2019

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Second right-hand column of triangle A008955.
Equals row sums of A162990(n)/(n+1)^2 for n >= 1.

Programs

Formula

a_n = (n!)^2 * Sum_{k=1..n} 1/k^2. - Joe Keane (jgk(AT)jgk.org)
a(n) ~ (1/3)*Pi^3*n*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
Sum_{n>=0} a(n)*x^n/n!^2 = polylog(2, x)/(1-x). - Vladeta Jovovic, Jan 23 2003
a(n) = Sum_{i=1..n} 1/i^2 / Product_{i=1..n} 1/i^2. - Alexander Adamchuk, Jul 11 2006
a(0) = 0, a(n) = a(n-1)*n^2 + A001044(n-1). E.g., a(1) = 0*1 + 1 = 1 since A001044(0) = 1; a(2) = 1*2^2 + 1 = 5 since A001044(1) = 1; a(3) = 5*3^2 + 4 = 49 since A001044(2) = 4; and so on. - Pierre CAMI, Oct 30 2006
Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n^2 + 2*n + 1)*a(n) - n^4*a(n-1). The sequence b(n) = n!^2 satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 1. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(1 - 1^4/(5 - 2^4/(13 - 3^4/(25 - ... -(n-1)^4/((2*n^2 - 2*n + 1)))))), leading to the infinite continued fraction expansion zeta(2) = 1/(1-1^4/(5 - 2^4/(13 - 3^4/(25 - ... - n^4/((2*n^2 + 2*n + 1) - ...))))). Compare with A142995. Compare also with A024167 and A066989. - Peter Bala, Jul 18 2008
a(n)/(n!)^2 -> zeta(2) = A013661 as n -> infinity, rewriting the Keane formula. - Najam Haq (njmalhq(AT)yahoo.com), Jan 13 2010
a(n) = s(n+1,2)^2 - 2*s(n+1,1)*s(n+1,3), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012

Extensions

Minor edits by Vaclav Kotesovec, Jan 28 2015

A001820 Central factorial numbers: 2nd subdiagonal of A008955.

Original entry on oeis.org

1, 14, 273, 7645, 296296, 15291640, 1017067024, 84865562640, 8689315795776, 1071814846360896, 156823829909121024, 26862299458337581056, 5325923338791614078976, 1210310405427816646041600, 312542036038910895995289600, 91018216923341770801874534400
Offset: 0

Views

Author

Keywords

Comments

a(n-2) is the coefficient of x^3 in Product_{k=0..n} (x + k^2).

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A049033.
Third right-hand column of triangle A008955.

Programs

  • Maple
    seq(2*Stirling1(n+3, 1)*Stirling1(n+3, 5)-2*Stirling1(n+3, 2)*Stirling1(n+3, 4)+Stirling1(n+3, 3)^2, n=0..20); # Mircea Merca, Apr 03 2012
  • Mathematica
    Table[StirlingS1[n+3, 3]^2 - 2*StirlingS1[n+3, 2]*StirlingS1[n+3, 4] + 2*StirlingS1[n+3, 1]*StirlingS1[n+3, 5], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)

Formula

a(n) = s(n+3,3)^2 - 2*s(n+3,2)*s(n+3,4) + 2*s(n+3,1)*s(n+3,5), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
a(n) = (3*n^2 + 6*n + 5)*a(n-1) - (n^2 + n + 1)*(3*n^2 + 3*n + 1)*a(n-2) + n^6*a(n-3). - Vaclav Kotesovec, Feb 23 2015
a(n) ~ Pi^5 * n^(2*n+5) / (60 * exp(2*n)). - Vaclav Kotesovec, Feb 23 2015

A000596 Central factorial numbers: A008955(n,2).

Original entry on oeis.org

4, 49, 273, 1023, 3003, 7462, 16422, 32946, 61446, 108031, 180895, 290745, 451269, 679644, 997084, 1429428, 2007768, 2769117, 3757117, 5022787, 6625311, 8632866, 11123490, 14185990, 17920890, 22441419, 27874539, 34362013, 42061513, 51147768, 61813752, 74271912
Offset: 3

Views

Author

Keywords

Comments

a(n) is the sum of the products of each unique pair of elements of the set {1, 4, 9, 16, ... , (n-1)^2} (a(3) = 1*4, a(4) = 1*4 + 1*9 + 4*9, a(5) = 1*4 + 1*9 + 1*16 + 4*9 + 4*16 + 9*16, etc.) - Jeffreylee R. Snow, Sep 23 2013

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of triangle A008955.
Cf. A000290 (squares), A000330 (sum of squares), A000597 (order 3).

Programs

  • Maple
    A000596:=-(4+21*z+14*z**2+z**3)/(z-1)**7; # conjectured by Simon Plouffe in his 1992 dissertation
    seq(stirling1(n,n-2)^2-2*stirling1(n,n-3)*stirling1(n,n-1)+2*stirling1(n,n-4),n=0..50); # Mircea Merca, Apr 03 2012
  • Mathematica
    f[k_] := k^2; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 32}]  (* A000596 *)
    (* Clark Kimberling, Dec 31 2011 *)
    a[n_] := 1/360 * n * (n - 1) * (n - 2) * (2n - 1) * (2n - 3) * (5n + 1);Table[a[n],{n,3,34}] (* James C. McMahon, Dec 05 2023 *)
  • PARI
    {a(n) = n*(n-1)*(n-2)*(2*n-1)*(2*n-3)*(5*n+1)/360}; \\ Roudy El Haddad, Feb 17 2022

Formula

a(n) = (1/360)*n*(n-1)*(n-2)*(2*n-1)*(2*n-3)*(5*n+1).
a(n+1/2) = (1/16)*A001823(n).
a(n) = s(n,n-2)^2-2*s(n,n-3)*s(n,n-1)+2*s(n,n-4), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
From Roudy El Haddad, Feb 17 2022: (Start)
a(n) = Sum_{0 < i < j < n} (i*j)^2.
a(n) = binomial(2n,5)*(5*n+1)/4!. (End)

Extensions

Minor edits by Vaclav Kotesovec, Feb 23 2015

A234324 Central terms of the triangle of central factorial numbers (A008955).

Original entry on oeis.org

1, 5, 273, 44473, 14739153, 8261931405, 7026231453265, 8439654758970225, 13611213226804376865, 28383081191068916580565, 74326386672885754888959569, 238812235698229573137588936105, 923793013650701305781038113833585, 4235104161629281000608041716747118685
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 24 2013

Keywords

Comments

a(n) = A008955(2*n,n).

Crossrefs

Programs

  • Haskell
    a234324 n = a008955 (2 * n) n
  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1,
          add(b(j-1, k-1)*j^2, j=1..n))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    Flatten[{1, Table[Coefficient[Expand[Product[1 + k^2*x, {k, 0, 2*n}]], x^n], {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 28 2017 *)
    Table[Sum[(-1)^(n-j) * StirlingS1[2*n+1, 2*n+1-j] * StirlingS1[2*n+1, j+1], {j, 0, 2*n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 28 2017 *)

Formula

a(n) ~ c * d^n * n!^2 / n^(3/2), where d = 30.472614208903344955058219429421999299236787591960717... and c = 0.27436634881777520262458169083560234658... - Vaclav Kotesovec, Aug 28 2017

A000597 Central factorial numbers: A008955(n,3).

Original entry on oeis.org

36, 820, 7645, 44473, 191620, 669188, 1999370, 5293970, 12728936, 28285400, 58856655, 115842675, 217378200, 391367064, 679524340, 1142659012, 1867463260, 2975110060, 4631998657, 7063027565, 10567817084, 15540347900, 22492529150, 32082258390, 45146587200
Offset: 4

Views

Author

Keywords

Comments

a(n) is the sum of all products of three distinct squares of positive integers up to n, i.e., the sum of all products of three distinct elements from the set of squares {1^2, ..., (n-1)^2}. - Roudy El Haddad, Feb 17 2022

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of triangle A008955.
Cf. A000290 (squares), A000330 (sum of squares), A000596 (for two squares).
Cf. A001303 (for power 1).

Programs

  • Maple
    1/(-1+z)^10*(z^5+75*z^4+603*z^3+1065*z^2+460*z+36);
    seq(stirling1(n,n-3)^2-2*stirling1(n,n-4)*stirling1(n,n-2)+2*stirling1(n,n-5)*stirling1(n,n-1)+2*stirling1(n,n-6),n=0..30); # Mircea Merca, Apr 03 2012
  • Mathematica
    CoefficientList[Series[(x^5 + 75*x^4 + 603*x^3 + 1065*x^2 + 460*x + 36)/(1-x)^10, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 23 2015 *)
    LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {36, 820, 7645, 44473, 191620, 669188, 1999370, 5293970, 12728936, 28285400}, 40] (* Vincenzo Librandi, Aug 07 2017 *)
  • PARI
    {a(n) = (n-1)*(n-2)*(n-3)*(n)*(2*n-1)*(2*n-3)*(2*n-5)*(35*n^2+21*n+4)/45360}; \\ Roudy El Haddad, Feb 17 2022

Formula

O.g.f.: x^4 * (x^5 + 75*x^4 + 603*x^3 + 1065*x^2 + 460*x + 36) / (1-x)^10.
a(n) = s(n,n-3)^2-2*s(n,n-4)*s(n,n-2)+2*s(n,n-5)*s(n,n-1)+2*s(n,n-6), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
From Roudy El Haddad, Feb 17 2022: (Start)
a(n) = Sum_{0 < i < j < k < n} (i*j*k)^2.
a(n) = (n - 1)*(n - 2)*(n - 3)*n*(2*n-1)*(2*n - 3)*(2*n - 5)*(35*n^2 + 21*n + 4)/45360.
a(n) = (1/(9!*2))*((2*n)!/(2*n-7)!)*(35*n^2 + 21*n + 4).
a(n) = binomial(2*n,7)*(35*n^2 + 21*n + 4)/144. (End)

A001821 Central factorial numbers: 3rd subdiagonal of A008955.

Original entry on oeis.org

1, 30, 1023, 44473, 2475473, 173721912, 15088541896, 1593719752240, 201529405816816, 30092049283982400, 5242380158902146624, 1054368810603158319360, 242558905724502235934976, 63305390270900389045395456, 18607799824329123330114576384
Offset: 0

Views

Author

Keywords

Comments

a(n-3) is the coefficient of x^4 in Product_{k=0..n} (x + k^2). - Ralf Stephan, Aug 22 2004

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Fourth right-hand column of triangle A008955.

Programs

  • Maple
    seq(Stirling1(n+4, 4)^2-2*Stirling1(n+4, 1)*Stirling1(n+4, 7)+2*Stirling1(n+4, 2)*Stirling1(n+4, 6) -2*Stirling1(n+4, 3)*Stirling1(n+4, 5), n=0..20); # Mircea Merca, Apr 03 2012
  • Mathematica
    Table[StirlingS1[n+4, 4]^2 - 2*StirlingS1[n+4, 1]*StirlingS1[n+4, 7] + 2*StirlingS1[n+4, 2]*StirlingS1[n+4, 6] - 2*StirlingS1[n+4, 3]*StirlingS1[n+4, 5], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def s(n, k): return stirling(n, k, kind=1)
    def a(n): return s(n+4, 4)**2 - 2*s(n+4, 1)*s(n+4, 7) + 2*s(n+4, 2)*s(n+4, 6) - 2*s(n+4, 3)*s(n+4, 5)
    print([a(n) for n in range(15)]) # Michael S. Branicky, Jan 30 2021

Formula

a(n) = s(n+4,4)^2 - 2*s(n+4,1)*s(n+4,7) + 2*s(n+4,2)*s(n+4,6) - 2*s(n+4,3)*s(n+4,5), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
a(n) = 2*(2*n^2 + 6*n + 7)*a(n-1) - 3*(2*n^4 + 8*n^3 + 16*n^2 + 16*n + 7)*a(n-2) + (2*n^2 + 2*n + 1)*(2*n^4 + 4*n^3 + 6*n^2 + 4*n + 1)*a(n-3) - n^8*a(n-4). - Vaclav Kotesovec, Feb 23 2015
a(n) ~ Pi^7 * n^(2*n+7) / (2520 * exp(2*n)). - Vaclav Kotesovec, Feb 23 2015

Extensions

More terms from Ralf Stephan, Aug 22 2004

A000330 Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.

Original entry on oeis.org

0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
Offset: 0

Views

Author

Keywords

Comments

The sequence contains exactly one square greater than 1, namely 4900 (according to Gardner). - Jud McCranie, Mar 19 2001, Mar 22 2007 [This is a result from Watson. - Charles R Greathouse IV, Jun 21 2013] [See A351830 for further related comments and references.]
Number of rhombi in an n X n rhombus. - Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000
Number of acute triangles made from the vertices of a regular n-polygon when n is odd (cf. A007290). - Sen-Peng Eu, Apr 05 2001
Gives number of squares with sides parallel to the axes formed from an n X n square. In a 1 X 1 square, one is formed. In a 2 X 2 square, five squares are formed. In a 3 X 3 square, 14 squares are formed and so on. - Kristie Smith (kristie10spud(AT)hotmail.com), Apr 16 2002; edited by Eric W. Weisstein, Mar 05 2025
a(n-1) = B_3(n)/3, where B_3(x) = x(x-1)(x-1/2) is the third Bernoulli polynomial. - Michael Somos, Mar 13 2004
Number of permutations avoiding 13-2 that contain the pattern 32-1 exactly once.
Since 3*r = (r+1) + r + (r-1) = T(r+1) - T(r-2), where T(r) = r-th triangular number r*(r+1)/2, we have 3*r^2 = r*(T(r+1) - T(r-2)) = f(r+1) - f(r-1) ... (i), where f(r) = (r-1)*T(r) = (r+1)*T(r-1). Summing over n, the right hand side of relation (i) telescopes to f(n+1) + f(n) = T(n)*((n+2) + (n-1)), whence the result Sum_{r=1..n} r^2 = n*(n+1)*(2*n+1)/6 immediately follows. - Lekraj Beedassy, Aug 06 2004
Also as a(n) = (1/6)*(2*n^3 + 3*n^2 + n), n > 0: structured trigonal diamond numbers (vertex structure 5) (cf. A006003 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of triples of integers from {1, 2, ..., n} whose last component is greater than or equal to the others.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Sum of the first n positive squares. - Cino Hilliard, Jun 18 2007
Maximal number of cubes of side 1 in a right pyramid with a square base of side n and height n. - Pasquale CUTOLO (p.cutolo(AT)inwind.it), Jul 09 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
We also have the identity 1 + (1+4) + (1+4+9) + ... + (1+4+9+16+ ... + n^2) = n(n+1)(n+2)(n+(n+1)+(n+2))/36; ... and in general the k-fold nested sum of squares can be expressed as n(n+1)...(n+k)(n+(n+1)+...+(n+k))/((k+2)!(k+1)/2). - Alexander R. Povolotsky, Nov 21 2007
The terms of this sequence are coefficients of the Engel expansion of the following converging sum: 1/(1^2) + (1/1^2)*(1/(1^2+2^2)) + (1/1^2)*(1/(1^2+2^2))*(1/(1^2+2^2+3^2)) + ... - Alexander R. Povolotsky, Dec 10 2007
Convolution of A000290 with A000012. - Sergio Falcon, Feb 05 2008
Hankel transform of binomial(2*n-3, n-1) is -a(n). - Paul Barry, Feb 12 2008
Starting (1, 5, 14, 30, ...) = binomial transform of [1, 4, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Jun 13 2008
Starting (1,5,14,30,...) = second partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+2,i+2)*b(i), where b(i)=1,2,0,0,0,... - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Convolution of A001477 with A005408: a(n) = Sum_{k=0..n} (2*k+1)*(n-k). - Reinhard Zumkeller, Mar 07 2009
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF1 denominators of A156921. See A157702 for background information. - Johannes W. Meijer, Mar 07 2009
The sequence is related to A000217 by a(n) = n*A000217(n) - Sum_{i=0..n-1} A000217(i) and this is the case d = 1 in the identity n^2*(d*n-d+2)/2 - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)(2*d*n-2*d+3)/6, or also the case d = 0 in n^2*(n+2*d+1)/2 - Sum_{i=0..n-1} i*(i+2*d+1)/2 = n*(n+1)*(2*n+3*d+1)/6. - Bruno Berselli, Apr 21 2010, Apr 03 2012
a(n)/n = k^2 (k = integer) for n = 337; a(337) = 12814425, a(n)/n = 38025, k = 195, i.e., the number k = 195 is the quadratic mean (root mean square) of the first 337 positive integers. There are other such numbers -- see A084231 and A084232. - Jaroslav Krizek, May 23 2010
Also the number of moves to solve the "alternate coins game": given 2n+1 coins (n+1 Black, n White) set alternately in a row (BWBW...BWB) translate (not rotate) a pair of adjacent coins at a time (1 B and 1 W) so that at the end the arrangement shall be BBBBB..BW...WWWWW (Blacks separated by Whites). Isolated coins cannot be moved. - Carmine Suriano, Sep 10 2010
From J. M. Bergot, Aug 23 2011: (Start)
Using four consecutive numbers n, n+1, n+2, and n+3 take all possible pairs (n, n+1), (n, n+2), (n, n+3), (n+1, n+2), (n+1, n+3), (n+2, n+3) to create unreduced Pythagorean triangles. The sum of all six areas is 60*a(n+1).
Using three consecutive odd numbers j, k, m, (j+k+m)^3 - (j^3 + k^3 + m^3) equals 576*a(n) = 24^2*a(n) where n = (j+1)/2. (End)
From Ant King, Oct 17 2012: (Start)
For n > 0, the digital roots of this sequence A010888(a(n)) form the purely periodic 27-cycle {1, 5, 5, 3, 1, 1, 5, 6, 6, 7, 2, 2, 9, 7, 7, 2, 3, 3, 4, 8, 8, 6, 4, 4, 8, 9, 9}.
For n > 0, the units' digits of this sequence A010879(a(n)) form the purely periodic 20-cycle {1, 5, 4, 0, 5, 1, 0, 4, 5, 5, 6, 0, 9, 5, 0, 6, 5, 9, 0, 0}. (End)
Length of the Pisano period of this sequence mod n, n>=1: 1, 4, 9, 8, 5, 36, 7, 16, 27, 20, 11, 72, 13, 28, 45, 32, 17, 108, 19, 40, ... . - R. J. Mathar, Oct 17 2012
Sum of entries of n X n square matrix with elements min(i,j). - Enrique Pérez Herrero, Jan 16 2013
The number of intersections of diagonals in the interior of regular n-gon for odd n > 1 divided by n is a square pyramidal number; that is, A006561(2*n+1)/(2*n+1) = A000330(n-1) = (1/6)*n*(n-1)*(2*n-1). - Martin Renner, Mar 06 2013
For n > 1, a(n)/(2n+1) = A024702(m), for n such that 2n+1 = prime, which results in 2n+1 = A000040(m). For example, for n = 8, 2n+1 = 17 = A000040(7), a(8) = 204, 204/17 = 12 = A024702(7). - Richard R. Forberg, Aug 20 2013
A formula for the r-th successive summation of k^2, for k = 1 to n, is (2*n+r)*(n+r)!/((r+2)!*(n-1)!) (H. W. Gould). - Gary Detlefs, Jan 02 2014
The n-th square pyramidal number = the n-th triangular dipyramidal number (Johnson 12), which is the sum of the n-th + (n-1)-st tetrahedral numbers. E.g., the 3rd tetrahedral number is 10 = 1+3+6, the 2nd is 4 = 1+3. In triangular "dipyramidal form" these numbers can be written as 1+3+6+3+1 = 14. For "square pyramidal form", rebracket as 1+(1+3)+(3+6) = 14. - John F. Richardson, Mar 27 2014
Beukers and Top prove that no square pyramidal number > 1 equals a tetrahedral number A000292. - Jonathan Sondow, Jun 21 2014
Odd numbered entries are related to dissections of polygons through A100157. - Tom Copeland, Oct 05 2014
From Bui Quang Tuan, Apr 03 2015: (Start)
We construct a number triangle from the integers 1, 2, 3, ..., n as follows. The first column contains 2*n-1 integers 1. The second column contains 2*n-3 integers 2, ... The last column contains only one integer n. The sum of all the numbers in the triangle is a(n).
Here is an example with n = 5:
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
(End)
The Catalan number series A000108(n+3), offset 0, gives Hankel transform revealing the square pyramidal numbers starting at 5, A000330(n+2), offset 0 (empirical observation). - Tony Foster III, Sep 05 2016; see Dougherty et al. link p. 2. - Andrey Zabolotskiy, Oct 13 2016
Number of floating point additions in the factorization of an (n+1) X (n+1) real matrix by Gaussian elimination as e.g. implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of multiplications is given by A007290. - Hugo Pfoertner, Mar 28 2018
The Jacobi polynomial P(n-1,-n+2,2,3) or equivalently the sum of dot products of vectors from the first n rows of Pascal's triangle (A007318) with the up-diagonal Chebyshev T coefficient vector (1,3,2,0,...) (A053120) or down-diagonal vector (1,-7,32,-120,400,...) (A001794). a(5) = 1 + (1,1).(1,3) + (1,2,1).(1,3,2) + (1,3,3,1).(1,3,2,0) + (1,4,6,4,1).(1,3,2,0,0) = (1 + (1,1).(1,-7) + (1,2,1).(1,-7,32) + (1,3,3,1).(1,-7,32,-120) + (1,4,6,4,1).(1,-7,32,-120,400))*(-1)^(n-1) = 55. - Richard Turk, Jul 03 2018
Coefficients in the terminating series identity 1 - 5*n/(n + 4) + 14*n*(n - 1)/((n + 4)*(n + 5)) - 30*n*(n - 1)*(n - 2)/((n + 4)*(n + 5)*(n + 6)) + ... = 0 for n = 1,2,3,.... Cf. A002415 and A108674. - Peter Bala, Feb 12 2019
n divides a(n) iff n == +- 1 (mod 6) (see A007310). (See De Koninck reference.) Examples: a(11) = 506 = 11 * 46, and a(13) = 819 = 13 * 63. - Bernard Schott, Jan 10 2020
For n > 0, a(n) is the number of ternary words of length n+2 having 3 letters equal to 2 and 0 only occurring as the last letter. For example, for n=2, the length 4 words are 2221,2212,2122,1222,2220. - Milan Janjic, Jan 28 2020
Conjecture: Every integer can be represented as a sum of three generalized square pyramidal numbers. A related conjecture is given in A336205 corresponding to pentagonal case. A stronger version of these conjectures is that every integer can be expressed as a sum of three generalized r-gonal pyramidal numbers for all r >= 3. In here "generalized" means negative indices are included. - Altug Alkan, Jul 30 2020
The natural number y is a term if and only if y = a(floor((3 * y)^(1/3))). - Robert Israel, Dec 04 2024
Also the number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by a rotation of the board. Reflections are ignored. Equivalently, number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by an axial reflection of the board (horizontal or vertical). Rotations and diagonal reflections are ignored. - Hilko Koning, Aug 22 2025

Examples

			G.f. = x + 5*x^2 + 14*x^3 + 30*x^4 + 55*x^5 + 91*x^6 + 140*x^7 + 204*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover Publications, NY, 1964, p. 194.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 215,223.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 122, see #19 (3(1)), I(n); p. 155.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 47-49.
  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
  • J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 310, pp. 46-196, Ellipses, Paris, 2004.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 293.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 293.
  • M. Holt, Math puzzles and games, Walker Publishing Company, 1977, p. 2 and p. 89.
  • Simon Singh, The Simpsons and Their Mathematical Secrets. London: Bloomsbury Publishing PLC (2013): 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 126.

Crossrefs

Sums of 2 consecutive terms give A005900.
Column 0 of triangle A094414.
Column 1 of triangle A008955.
Right side of triangle A082652.
Row 2 of array A103438.
Partial sums of A000290.
Cf. similar sequences listed in A237616 and A254142.
Cf. |A084930(n, 1)|.
Cf. A253903 (characteristic function).
Cf. A034705 (differences of any two terms).

Programs

  • GAP
    List([0..30], n-> n*(n+1)*(2*n+1)/6); # G. C. Greubel, Dec 31 2019
  • Haskell
    a000330 n = n * (n + 1) * (2 * n + 1) `div` 6
    a000330_list = scanl1 (+) a000290_list
    -- Reinhard Zumkeller, Nov 11 2012, Feb 03 2012
    
  • Magma
    [n*(n+1)*(2*n+1)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 28 2014
    
  • Magma
    [0] cat [((2*n+3)*Binomial(n+2,2))/3: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    A000330 := n -> n*(n+1)*(2*n+1)/6;
    a := n->(1/6)*n*(n+1)*(2*n+1): seq(a(n),n=0..53); # Emeric Deutsch
    with(combstruct): ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*2), m=1..45) ; # Zerinvary Lajos, Jan 02 2008
    nmax := 44; for n from 0 to nmax do fz(n) := product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n) := abs(coeff(fz(n),z,1)); end do: a := n-> c(n): seq(a(n), n=0..nmax); # Johannes W. Meijer, Mar 07 2009
  • Mathematica
    Table[Binomial[w+2, 3] + Binomial[w+1, 3], {w, 0, 30}]
    CoefficientList[Series[x(1+x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    Accumulate[Range[0,50]^2] (* Harvey P. Dale, Sep 25 2014 *)
  • Maxima
    A000330(n):=binomial(n+2,3)+binomial(n+1,3)$
    makelist(A000330(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    {a(n) = n * (n+1) * (2*n+1) / 6};
    
  • PARI
    upto(n) = [x*(x+1)*(2*x+1)/6 | x<-[0..n]] \\ Cino Hilliard, Jun 18 2007, edited by M. F. Hasler, Jan 02 2024
    
  • Python
    a=lambda n: (n*(n+1)*(2*n+1))//6 # Indranil Ghosh, Jan 04 2017
    
  • Sage
    [n*(n+1)*(2*n+1)/6 for n in (0..30)] # G. C. Greubel, Dec 31 2019
    

Formula

G.f.: x*(1+x)/(1-x)^4. - Simon Plouffe (in his 1992 dissertation: generating function for sequence starting at a(1))
E.g.f.: (x + 3*x^2/2 + x^3/3)*exp(x).
a(n) = n*(n+1)*(2*n+1)/6 = binomial(n+2, 3) + binomial(n+1, 3).
2*a(n) = A006331(n). - N. J. A. Sloane, Dec 11 1999
Can be extended to Z with a(n) = -a(-1-n) for all n in Z.
a(n) = A002492(n)/4. - Paul Barry, Jul 19 2003
a(n) = (((n+1)^4 - n^4) - ((n+1)^2 - n^2))/12. - Xavier Acloque, Oct 16 2003
From Alexander Adamchuk, Oct 26 2004: (Start)
a(n) = sqrt(A271535(n)).
a(n) = (Sum_{k=1..n} Sum_{j=1..n} Sum_{i=1..n} (i*j*k)^2)^(1/3). (End)
a(n) = Sum_{i=1..n} i*(2*n-2*i+1); sum of squares gives 1 + (1+3) + (1+3+5) + ... - Jon Perry, Dec 08 2004
a(n+1) = A000217(n+1) + 2*A000292(n). - Creighton Dement, Mar 10 2005
Sum_{n>=1} 1/a(n) = 6*(3-4*log(2)); Sum_{n>=1} (-1)^(n+1)*1/a(n) = 6*(Pi-3). - Philippe Deléham, May 31 2005
Sum of two consecutive tetrahedral (or pyramidal) numbers a(n) = A000292(n-1) + A000292(n). - Alexander Adamchuk, May 17 2006
Euler transform of length-2 sequence [ 5, -1 ]. - Michael Somos, Sep 04 2006
a(n) = a(n-1) + n^2. - Rolf Pleisch, Jul 22 2007
a(n) = A132121(n,0). - Reinhard Zumkeller, Aug 12 2007
a(n) = binomial(n, 2) + 2*binomial(n, 3). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009, corrected by M. F. Hasler, Jan 02 2024
a(n) = A168559(n) + 1 for n > 0. - Reinhard Zumkeller, Feb 03 2012
a(n) = Sum_{i=1..n} J_2(i)*floor(n/i), where J_2 is A007434. - Enrique Pérez Herrero, Feb 26 2012
a(n) = s(n+1, n)^2 - 2*s(n+1, n-1), where s(n, k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
a(n) = A001477(n) + A000217(n) + A007290(n+2) + 1. - J. M. Bergot, May 31 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 2. - Ant King, Oct 17 2012
a(n) = Sum_{i = 1..n} Sum_{j = 1..n} min(i,j). - Enrique Pérez Herrero, Jan 15 2013
a(n) = A000217(n) + A007290(n+1). - Ivan N. Ianakiev, May 10 2013
a(n) = (A047486(n+2)^3 - A047486(n+2))/24. - Richard R. Forberg, Dec 25 2013
a(n) = Sum_{i=0..n-1} (n-i)*(2*i+1), with a(0) = 0. After 0, row sums of the triangle in A101447. - Bruno Berselli, Feb 10 2014
a(n) = n + 1 + Sum_{i=1..n+1} (i^2 - 2i). - Wesley Ivan Hurt, Feb 25 2014
a(n) = A000578(n+1) - A002412(n+1). - Wesley Ivan Hurt, Jun 28 2014
a(n) = Sum_{i = 1..n} Sum_{j = i..n} max(i,j). - Enrique Pérez Herrero, Dec 03 2014
a(n) = A055112(n)/6, see Singh (2013). - Alonso del Arte, Feb 20 2015
For n >= 2, a(n) = A028347(n+1) + A101986(n-2). - Bui Quang Tuan, Apr 03 2015
For n > 0: a(n) = A258708(n+3,n-1). - Reinhard Zumkeller, Jun 23 2015
a(n) = A175254(n) + A072481(n), n >= 1. - Omar E. Pol, Aug 12 2015
a(n) = A000332(n+3) - A000332(n+1). - Antal Pinter, Dec 27 2015
Dirichlet g.f.: zeta(s-3)/3 + zeta(s-2)/2 + zeta(s-1)/6. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A080851(2,n-1). - R. J. Mathar, Jul 28 2016
a(n) = (A005408(n) * A046092(n))/12 = (2*n+1)*(2*n*(n+1))/12. - Bruce J. Nicholson, May 18 2017
12*a(n) = (n+1)*A001105(n) + n*A001105(n+1). - Bruno Berselli, Jul 03 2017
a(n) = binomial(n-1, 1) + binomial(n-1, 2) + binomial(n, 3) + binomial(n+1, 2) + binomial(n+1, 3). - Tony Foster III, Aug 24 2018
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Nathan Fox, Dec 04 2019
Let T(n) = A000217(n), the n-th triangular number. Then a(n) = (T(n)+1)^2 + (T(n)+2)^2 + ... + (T(n)+n)^2 - (n+2)*T(n)^2. - Charlie Marion, Dec 31 2019
a(n) = 2*n - 1 - a(n-2) + 2*a(n-1). - Boštjan Gec, Nov 09 2023
a(n) = 2/(2*n)! * Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+2) * binomial(2*n, n-j). Cf. A060493. - Peter Bala, Mar 31 2025

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A001044 a(n) = (n!)^2.

Original entry on oeis.org

1, 1, 4, 36, 576, 14400, 518400, 25401600, 1625702400, 131681894400, 13168189440000, 1593350922240000, 229442532802560000, 38775788043632640000, 7600054456551997440000, 1710012252724199424000000, 437763136697395052544000000, 126513546505547170185216000000
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the symmetrical n X n matrix M_n(i,j) = 1/Max(i,j); then for n > 0 det(M_n)=1/a(n). - Benoit Cloitre, Apr 27 2002
The n-th entry of the sequence is the value of the permanent of a k X k matrix A defined as follows: k is the n-th odd number; if we concatenate the rows of A to form a vector v of length n^2, v_{i}=1 if i=1 or a multiple of 2. - Simone Severini, Feb 15 2006
a(n) = number of set partitions of {1,2,...,3n-1,3n} into blocks of size 3 in which the entries of each block mod 3 are distinct. For example, a(2) = 4 counts 123-456, 156-234, 126-345, 135-246. - David Callan, Mar 30 2007
From Emeric Deutsch, Nov 22 2007: (Start)
Number of permutations of {1,2,...,2n} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 1234, 1324, 3124 and 2314.
Number of permutations of {1,2,...,2n} with n even entries that are followed by a smaller entry. Example: a(2)=4 because we have 2143, 3421, 4213 and 4321.
Number of permutations of {1,2,...,2n-1} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 123, 132, 312 and 231.
Number of permutations of {1,2,...,2n-1} with n-1 odd entries followed by a smaller entry. Example: a(2)=4 because we have 132, 312, 231 and 321.
(End)
G. Leibniz in his "Ars Combinatoria" established the identity P(n)^2 = P(n-1)[P(n+1)-P(n)], where P(n) = n!. (For example, see the Burton reference.) - Mohammad K. Azarian, Mar 28 2008
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = sigma_2(gcd(i,j)) for 1 <= i,j <= n, and n>0, where sigma_2 is A001157. - Enrique Pérez Herrero, Aug 13 2011
The o.g.f. of 1/a(n) is BesselI(0,2*sqrt(x)). See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 09 2012
Number of n x n x n cubes C of zeros and ones such that C(x,y,z) and C(u,v,w) can be nonzero simultaneously only if either x!=u, y!=v, or z!=w. This generalizes permutations which can be considered as n x n squares P of zeros and ones such that P(x,y) and P(u,v) can be nonzero simultaneously only if either x!=u or y!=v. - Joerg Arndt, May 28 2012
a(n) is the number of functions f:[n]->[n(n+1)/2] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. - Dennis P. Walsh, Nov 26 2012
From Jerrold Grossman, Jul 22 2018: (Start)
a(n) is the number of n X n 0-1 matrices whose row sums and column sums are both {1,2,...,n}.
a(n) is the number of linear arrangements of 2n blocks of n different colors, 2 of each color, such that there are an even number of blocks between each pair of blocks of the same color.
(End)
Number of ways to place n instances of a digit inside an n X n X n cube so that no two instances lie on a plane parallel to a face of the cube (see Khovanova link, Lemma 6, p. 22). - Tanya Khovanova and Wayne Zhao, Oct 17 2018
Number of permutations P of length 2n which maximize Sum_{i=1..2n} |P_i - i|. - Fang Lixing, Dec 07 2018

Examples

			Consider the square array
  1,  2,  3,  4,  5,  6, ...
  2,  4,  6,  8, 10, 12, ...
  3,  6,  9, 12, 15, 18, ...
  4,  8, 12, 16, 20, 24, ...
  5, 10, 15, 20, 25, 30, ...
  ...
then a(n) = product of n-th antidiagonal. - _Amarnath Murthy_, Apr 06 2003
a(3) = 36 since there are 36 functions f:[3]->[6] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. The functions, denoted by <f(1),f(2),f(3)>, are <1,2,4>, <1,2,5>, <1,2,6>, <1,3,4>, <1,3,5>, <1,3,6> and their respective permutations. - _Dennis P. Walsh_, Nov 26 2012
1 + x + 4*x^2 + 36*x^3 + 576*x^4 + 14400*x^5 + 518400*x^6 + ...
		

References

  • Archimedeans Problems Drive, Eureka, 22 (1959), 15.
  • David Burton, "The History of Mathematics", Sixth Edition, Problem 2, p. 433.
  • J. Dezert, editor, Smarandacheials, Mathematics Magazine, Aurora, Canada, No. 4/2004 (to appear).
  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.62(b).

Crossrefs

First right-hand column of triangle A008955.
Row n=2 of A225816.
Cf. A000290.
With signs, a row of A288580.

Programs

  • GAP
    List([0..20],n->Factorial(n)^2); # Muniru A Asiru, Oct 24 2018
    
  • Haskell
    import Data.List (genericIndex)
    a001044 n = genericIndex a001044_list n
    a001044_list = 1 : zipWith (*) (tail a000290_list) a001044_list
    -- Reinhard Zumkeller, Sep 05 2015
    
  • Magma
    [Factorial(n)^2: n in [0..20]]; // Vincenzo Librandi, Oct 24 2018
    
  • Maple
    seq((n!)^2,n=0..20); # Dennis P. Walsh, Nov 26 2012
  • Mathematica
    Table[n!^2, {n, 0, 20}] (* Stefan Steinerberger, Apr 07 2006 *)
    Join[{1},Table[Det[DiagonalMatrix[Range[n]^2]],{n,20}]] (* Harvey P. Dale, Mar 31 2020 *)
  • PARI
    a(n)=n!^2 \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    import math
    for n in range(0,20): print(math.factorial(n)**2, end=', ') # Stefano Spezia, Oct 29 2018

Formula

a(n) = Integral_{x>=0} 2*BesselK(0, 2*sqrt(x))*x^n. This integral represents the n-th moment of a positive function defined on the positive half-axis. - Karol A. Penson, Oct 09 2001
a(n) ~ 2*Pi*n*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
a(n) = polygorial(n, 4) = A000142(n)/A000079(n)*A000165(n) = (n!/2^n)*Product_{i=0..n-1} (2*i + 2) = n!*Pochhammer(1, n) = n!^2. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
a(n) = Sum_{k>=0} (-1)^k*C(n, k)^2*k!*(2*n-k)!. - Philippe Deléham, Jan 07 2004
a(n) = !n!1 = !n! = Product{i=0, 1, 2, ... .}_{0 < |n-i| <= n}(n-i) = n(n-1)(n-2)...(2)(1)(-1)(-2)...(-n+2)(-n+1)(-n) = [(-1)^n][(n!)^2]. - J. Dezert (Jean.Dezert(AT)onera.fr), Mar 21 2004
D-finite with recurrence: a(0) = 1, a(n) = n^2*a(n-1). - Arkadiusz Wesolowski, Oct 04 2011
From Sergei N. Gladkovskii, Jun 14 2012: (Start)
A(x) = Sum_{n>=0,N) a(n)*x^n = 1 + x/(U(0;N-2)-x); N >= 4; U(k)= 1 + x*(k+1)^2 - x*(k+2)^2/G(k+1); besides U(0;infinity)=x; (continued fraction).
Let B(x) = Sum_{n>=0} a(n)*x^n/((n!)*(n+s)!), then B(0) = 1/(1-x) for abs(x) < 1 and B(1)= -1/x * log(1-x) for abs(x)< 1.
(End).
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)^2*(1 - x*G(k+1)). - Sergei N. Gladkovskii, Jan 15 2013
a(n) = det(S(i+2,j), 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013
a(n) = (2*n+1)!*2^(-4*n)*Sum_{k=0..n} (-1)^k*C(2*n+1,n-k)/(2*k+1). - Mircea Merca, Nov 12 2013
a(n) = A000290(A000142(n)). - Michel Marcus, Nov 12 2013
Sum_{n>=0} 1/a(n) = A070910 [Gradsteyn, Rzyhik 0.246.1]. - R. J. Mathar, Feb 25 2014. Corrected by Ilya Gutkovskiy, Aug 16 2016
From Ivan N. Ianakiev, Aug 16 2016: (Start)
a(n) = a(n-1) + 2*((n-1)^2)*sqrt(a(n-1)*a(n-2)) + ((n-1)^4)*a(n-2), for n > 1.
a(n) = a(n-1) - 2*(n^2 - 1)*sqrt(a(n-1)*a(n-2)) + (n^2 - 1)*a(n-2), for n > 1.
(End).
From Ilya Gutkovskiy, Aug 16 2016: (Start)
a(n) = A184877(n)*A184877(n-1).
Sum_{n>=0} (-1)^n/a(n) = BesselJ(0,2) = A091681. (End)
Sum_{n>=0} a(n)/(2*n+1)! = 2*Pi/sqrt(27). - Daniel Suteu, Feb 06 2017
a(n) = [x^n] Product_{k=1..n} (1 + k^2*x). - Vaclav Kotesovec, Feb 19 2022
a(n) = (2*n+1)! * [x^(2*n+1)] 4*arcsin(x/2)/sqrt(4-x^2). - Ira M. Gessel, Dec 10 2024

Extensions

More terms from James Sellers, Sep 19 2000
More terms from Simone Severini, Feb 15 2006

A101686 a(n) = Product_{i=1..n} (i^2 + 1).

Original entry on oeis.org

1, 2, 10, 100, 1700, 44200, 1635400, 81770000, 5315050000, 435834100000, 44019244100000, 5370347780200000, 778700428129000000, 132379072781930000000, 26078677338040210000000, 5893781078397087460000000, 1514701737148051477220000000
Offset: 0

Views

Author

Ralf Stephan, Dec 13 2004

Keywords

Comments

Sum of all coefficients in Product_{k=0..n} (x + k^2).
Row sums of triangle of central factorial numbers (A008955).
"HANOWA" is a matrix whose eigenvalues lie on a vertical line. It is an N X N matrix with 2 X 2 blocks with identity matrices in the upper left and lower right blocks and diagonal matrices containing the first N integers in the upper right and lower left blocks. In MATLAB, the following code generates the sequence... for n=0:2:TERMS*2 det(gallery('hanowa',n)) end. - Paul Max Payton, Mar 31 2005
Cilleruelo shows that a(n) is a square only for n = 0 and 3. - Charles R Greathouse IV, Aug 27 2008
a(n) = A231530(n)^2 + A231531(n)^2. - Stanislav Sykora, Nov 10 2013

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 559-561, Section 147. - N. J. A. Sloane, May 29 2014

Crossrefs

Equals 2 * A051893(n+1), n>0. Cf. A156648.

Programs

  • Maple
    p := n -> mul(x^2+1, x=0..n):
    seq(p(i), i=0..14); # Gary Detlefs, Jun 03 2010
  • Mathematica
    Table[Product[k^2+1,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Nov 11 2013 *)
    Table[Pochhammer[I, n + 1] Pochhammer[-I, n + 1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
    Table[Abs[Pochhammer[1 + I, n]]^2, {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2016 *)
  • PARI
    a(n)=prod(k=1,n,k^2+1) \\ Charles R Greathouse IV, Aug 27 2008
    
  • PARI
    {a(n)=if(n==0, 1, 1-polcoeff(sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, 1+j^2*x+x*O(x^n))), n))} \\ Paul D. Hanna, Jan 07 2013
    
  • Python
    from math import prod
    def A101686(n): return prod(i**2+1 for i in range(1,n+1)) # Chai Wah Wu, Feb 22 2024

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^2*x). - Paul D. Hanna, Jan 07 2013
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - ((k+1)^2+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
a(n) ~ (n!)^2 * sinh(Pi)/Pi. - Vaclav Kotesovec, Nov 11 2013
From Vladimir Reshetnikov, Oct 25 2015: (Start)
a(n) = Gamma(n+1+i)*Gamma(n+1-i)*sinh(Pi)/Pi.
a(n) ~ 2*exp(-2*n)*n^(2*n+1)*sinh(Pi).
G.f. for 1/a(n): hypergeom([1], [1-i, 1+i], x).
E.g.f. for a(n)/n!: hypergeom([1-i, 1+i], [1], x), where i=sqrt(-1).
D-finite with recurrence: a(0) = 1, a(n) = (n^2+1)*a(n-1). (End)
a(n+3)/a(n+2) - 2 a(n+2)/a(n+1) + a(n+1)/a(n) = 2. - Robert Israel, Oct 25 2015
a(n) = A003703(n+1)^2 + A009454(n+1)^2. - Vladimir Reshetnikov, Oct 15 2016
a(n) = A105750(n)^2 + A105751(n)^2. - Ridouane Oudra, Dec 15 2021

Extensions

More terms from Charles R Greathouse IV, Aug 27 2008
Simpler definition from Gary Detlefs, Jun 03 2010
Entry revised by N. J. A. Sloane, Dec 22 2012
Minor edits by Vaclav Kotesovec, Mar 13 2015

A008956 Triangle of central factorial numbers |4^k t(2n+1,2n+1-2k)| read by rows (n>=0, k=0..n).

Original entry on oeis.org

1, 1, 1, 1, 10, 9, 1, 35, 259, 225, 1, 84, 1974, 12916, 11025, 1, 165, 8778, 172810, 1057221, 893025, 1, 286, 28743, 1234948, 21967231, 128816766, 108056025, 1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225, 1, 680
Offset: 0

Views

Author

Keywords

Comments

The n-th row gives the coefficients in the expansion of Product_{i=0..n-1} (x+(2i+1)^2), highest powers first (see the discussion of central factorial numbers in A008955). - N. J. A. Sloane, Feb 01 2011
Descending row polynomials in x^2 evaluated at k generate odd coefficients of e.g.f. sin(arcsin(kt)/k): 1, x^2 - 1, 9x^4 - 10x^2 + 1, 225x^6 - 259x^4 + 34x^2 - 1, ... - Ralf Stephan, Jan 16 2005
From Johannes W. Meijer, Jun 18 2009: (Start)
We define (Pi/2)*Beta(n-1/2-z/2,n-1/2+z/2)/Beta(n-1/2,n-1/2) = (Pi/2)*Gamma(n-1/2-z/2)* Gamma(n-1/2+z/2)/Gamma(n-1/2)^2 = sum(BG2[2m,n]*z^(2m), m = 0..infinity) with Beta(z,w) the Beta function. Our definition leads to BG2[2m,1] = 2*beta(2m+1) and the recurrence relation BG2[2m,n] = BG2[2m,n-1] - BG2[2m-2,n-1]/(2*n-3)^2 for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .. , with beta(m) = sum((-1)^k/(1+2*k)^m, k=0..infinity). We observe that beta(2m+1) = 0 for m = -1, -2, -3, .. .We found for the BG2[2*m,n] = sum((-1)^(k+n)*t2(n-1,k-1)* 2*beta(2*m-2*n+2*k+1),k=1..n)/((2*n-3)!!)^2 with the central factorial numbers t2(n,m) as defined above; see also the Maple program.
From the BG2 matrix and the closely related EG2 and ZG2 matrices, see A008955, we arrive at the LG2 matrix which is defined by LG2[2m-1,1] = 2*lambda(2*m) and the recurrence relation LG2[2*m-1,n] = LG2[2*m-3,n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LG2[2*m-1,n-1]/(2*n-1) for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .. , with lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function. We found for the matrix coefficients LG2[2m-1,n] = sum((-1)^(k+1)* t2(n-1,k-1)*2*lambda(2*m-2*n+2*k)/((2*n-1)!!*(2*n-3)!!), k=1..n) and we see that the central factorial numbers t2(n,m) once again play a crucial role.
(End)

Examples

			Triangle begins:
[1]
[1, 1]
[1, 10, 9]
[1, 35, 259, 225]
[1, 84, 1974, 12916, 11025]
[1, 165, 8778, 172810, 1057221, 893025]
[1, 286, 28743, 1234948, 21967231, 128816766, 108056025]
[1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225]
...
		

References

  • P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989). [From Johannes W. Meijer, Jun 18 2009]
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

Crossrefs

Cf. A008958.
Columns include A000447, A001823. Right-hand columns include A001818, A001824, A001825. Cf. A008955.
Appears in A160480 (Beta triangle), A160487 (Lambda triangle), A160479 (ZL(n) sequence), A161736, A002197 and A002198. - Johannes W. Meijer, Jun 18 2009
Cf. A162443 (BG1 matrix) and A162448 (LG1 matrix). - Johannes W. Meijer, Jul 06 2009
Cf. A001147.

Programs

  • Haskell
    a008956 n k = a008956_tabl !! n !! k
    a008956_row n = a008956_tabl !! n
    a008956_tabl = [1] : f [1] 1 1 where
       f xs u t = ys : f ys v (t * v) where
         ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
         v = u + 2
    -- Reinhard Zumkeller, Dec 24 2013
  • Maple
    f:=n->mul(x+(2*i+1)^2,i=0..n-1);
    for n from 0 to 12 do
    t1:=eval(f(n)); t1d:=degree(t1);
    t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
    lprint(t2);
    od: # N. J. A. Sloane, Feb 01 2011
    A008956 := proc(n,k) local i ; mul( x+2*i-2*n-1,i=1..2*n) ; expand(%) ; coeftayl(%,x=0,2*(n-k)) ; abs(%) ; end: for n from 0 to 10 do for k from 0 to n do printf("%a,",A008956(n,k)) ; od: od: # R. J. Mathar, May 29 2009
    nmax:=7: for n from 0 to nmax do t2(n, 0):=1: t2(n, n):=(doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do t2(n, k) := (2*n-1)^2*t2(n-1, k-1)+t2(n-1, k) od: od: seq(seq(t2(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
  • Mathematica
    t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n-1)!!)^2; t[n_, k_] := t[n, k] = (2*n-1)^2*t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Johannes W. Meijer *)
  • PARI
    {T(n, k) = if( n<=0, k==0, (-1)^k * polcoeff( numerator( 2^(2*n -1) / sum(j=0, 2*n - 1, binomial( 2*n - 1, j) / (x + 2*n - 1 - 2*j))), 2*n - 2*k))}; /* Michael Somos, Feb 24 2003 */
    

Formula

Conjecture row sums: Sum_{k=0..n} T(n,k) = |A101927(n+1)|. - R. J. Mathar, May 29 2009
May be generated by the recurrence t2(n,k) = (2*n-1)^2*t2(n-1,k-1)+t2(n-1,k) with t2(n,0) = 1 and t2(n,n)=((2*n-1)!!)^2. - Johannes W. Meijer, Jun 18 2009

Extensions

More terms from Vladeta Jovovic, Apr 16 2000
Edited by N. J. A. Sloane, Feb 01 2011
Showing 1-10 of 37 results. Next