cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A008955 Triangle of central factorial numbers |t(2n,2n-2k)| read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 4, 1, 14, 49, 36, 1, 30, 273, 820, 576, 1, 55, 1023, 7645, 21076, 14400, 1, 91, 3003, 44473, 296296, 773136, 518400, 1, 140, 7462, 191620, 2475473, 15291640, 38402064, 25401600, 1, 204, 16422, 669188, 14739153, 173721912, 1017067024, 2483133696, 1625702400
Offset: 0

Views

Author

Keywords

Comments

Discussion of Central Factorial Numbers by N. J. A. Sloane, Feb 01 2011: (Start)
Here is Riordan's definition of the central factorial numbers t(n,k) given in Combinatorial Identities, Section 6.5:
For n >= 0, expand the polynomial
x^[n] = x*Product{i=1..n-1} (x+n/2-i) = Sum_{k=0..n} t(n,k)*x^k.
The t(n,k) are not always integers. The cases n even and n odd are best handled separately.
For n=2m, we have:
x^[2m] = Product_{i=0..m-1} (x^2-i^2) = Sum_{k=1..m} t(2m,2k)*x^(2k).
E.g. x^[8] = x^2(x^2-1^2)(x^2-2^2)(x^2-3^2) = x^8-14x^6+49x^4-36x^2,
which corresponds to row 4 of the present triangle.
So the m-th row of the present triangle gives the absolute values of the coefficients in the expansion of Product_{i=0..m-1} (x^2-i^2).
Equivalently, and simpler, the n-th row gives the coefficients in the expansion of Product_{i=1..n-1}(x+i^2), highest powers first.
For n odd, n=2m+1, we have:
x^[2m+1] = x*Product_{i=0..m-1}(x^2-((2i+1)/2)^2) = Sum_{k=0..m} t(2m+1,2k+1)*x^(2k+1).
E.g. x^[5] = x(x^2-(1/2)^2)(x^2-(3/2)^2) = x^5-10x^3/4+9x/16,
which corresponds to row 2 of the triangle in A008956.
We now rescale to get integers by replacing x by x/2 and multiplying by 2^(2m+1) (getting 1, -10, 9 from the example).
The result is that row m of triangle A008956 gives the coefficients in the expansion of x*Product_{i=0..m} (x^2-(2i+1)^2).
Equivalently, and simpler, the n-th row of A008956 gives the coefficients in the expansion of Product_{i=0..n-1} (x+(2i+1)^2), highest powers first.
Note that the n-th row of A182867 gives the coefficients in the expansion of Product_{i=1..n} (x+(2i)^2), highest powers first.
(End)
Contribution from Johannes W. Meijer, Jun 18 2009: (Start)
We define Beta(n-z,n+z)/Beta(n,n) = Gamma(n-z)*Gamma(n+z)/Gamma(n)^2 = sum(EG2[2m,n]*z^(2m), m = 0..infinity) with Beta(z,w) the Beta function. The EG2[2m,n] coefficients are quite interesting, see A161739. Our definition leads to EG2[2m,1] = 2*eta(2m) and the recurrence relation EG2[2m,n] = EG2[2m,n-1] - EG2[2m-2,n-1]/(n-1)^2 for m = -2, -1, 0, 1, 2, ... and n = 2, 3, ... , with eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. We found for the matrix coefficients EG2[2m,n] = sum((-1)^(k+n)*t1(n-1,k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2,k=1..n) with the central factorial numbers t1(n,m) as defined above, see also the Maple program.
From the EG2 matrix we arrive at the ZG2 matrix, see A161739 for its odd counterpart, which is defined by ZG2[2m,1] = 2*zeta(2m) and the recurrence relation ZG2[2m,n] = ZG2[2m-2,n-1]/(n*(n-1))-(n-1)*ZG2[2m,n-1]/n for m = -2, -1, 0, 1, 2, ... and n = 2, 3, ... . We found for the ZG2[2m,n] = Sum_{k=1..n} (-1)^(k+1)*t1(n-1,k-1)* 2* zeta(2*m-2*n+2*k)/((n-1)!*(n)!), and we see that the central factorial numbers t1(n,m) once again play a crucial role.
(End)

Examples

			Triangle begins:
  1;
  1,   1;
  1,   5,   4;
  1,  14,  49,  36;
  1,  30, 273, 820, 576;
  ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

Crossrefs

Cf. A036969.
Columns include A000330, A000596, A000597. Right-hand columns include A001044, A001819, A001820, A001821. Row sums are in A101686.
Appears in A160464 (Eta triangle), A160474 (Zeta triangle), A160479 (ZL(n)), A161739 (RSEG2 triangle), A161742, A161743, A002195, A002196, A162440 (EG1 matrix), A162446 (ZG1 matrix) and A163927. - Johannes W. Meijer, Jun 18 2009, Jul 06 2009 and Aug 17 2009
Cf. A234324 (central terms).

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return 1;
        elif k=n then return (Factorial(n))^2;
        else return n^2*T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..8], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 14 2019
  • Haskell
    a008955 n k = a008955_tabl !! n !! k
    a008955_row n = a008955_tabl !! n
    a008955_tabl = [1] : f [1] 1 1 where
       f xs u t = ys : f ys v (t * v) where
         ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
         v = u + 1
    -- Reinhard Zumkeller, Dec 24 2013
    
  • Magma
    T:= func< n,k | Factorial(2*(n+1))*(&+[(-1)^j*Binomial(n,k-j)*(&+[2^(m-2*k)*StirlingFirst(2*(n-k+1)+m, 2*(n-k+1))*Binomial(2*(n-k+1)+2*j-1, 2*(n-k+1)+m-1)/Factorial(2*(n-k+1)+m): m in [0..2*j]]): j in [0..k]]) >;
    [T(n,k): k in [0..n], n in [0..8]]; // G. C. Greubel, Sep 14 2019
    
  • Maple
    nmax:=7: for n from 0 to nmax do t1(n, 0):=1: t1(n, n):=(n!)^2 end do: for n from 1 to nmax do for k from 1 to n-1 do t1(n, k) := t1(n-1, k-1)*n^2 + t1(n-1, k) end do: end do: seq(seq(t1(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
    t1 := proc(n,k)
            sum((-1)^j*stirling1(n+1,n+1-k+j)*stirling1(n+1,n+1-k-j),j=-k..k) ;
    end proc: # Mircea Merca, Apr 02 2012
    # third Maple program:
    T:= proc(n, k) option remember; `if`(k=0, 1,
          add(T(j-1, k-1)*j^2, j=1..n))
        end:
    seq(seq(T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    t[n_, 0]=1; t[n_, n_]=(n!)^2; t[n_ , k_ ]:=t[n, k] = n^2*t[n-1, k-1] + t[n-1, k]; Flatten[Table[t[n, k], {n,0,8}, {k,0,n}] ][[1 ;; 42]]
    (* Jean-François Alcover, May 30 2011, after recurrence formula *)
  • Maxima
    T(n,m):=(2*(n+1))!*sum((-1)^k*binomial(n,m-k)*sum((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1,2*(n-m+1)+i-1))/(2*(n-m+1)+i)!,i,0,2*k),k,0,m); /* Vladimir Kruchinin, Oct 05 2013 */
    
  • PARI
    T(n,k)=if(k==0,1, if(k==n, (n!)^2, n^2*T(n-1, k-1) + T(n-1, k)));
    for(n=0,8, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 14 2019
    
  • Sage
    # This triangle is (0,0)-based.
    def A008955(n, k) :
        if k==0 : return 1
        if k==n : return factorial(n)^2
        return n^2*A008955(n-1, k-1) + A008955(n-1, k)
    for n in (0..7) : print([A008955(n, k) for k in (0..n)]) # Peter Luschny, Feb 04 2012
    

Formula

The n-th row gives the coefficients in the expansion of Product_{i=1..n-1}(x+i^2), highest powers first (see Comments section).
The triangle can be obtained from the recurrence t1(n,k) = n^2*t1(n-1,k-1) + t1(n-1,k) with t1(n,0) = 1 and t1(n,n) = (n!)^2.
t1(n,k) = Sum_{j=-k..k} (-1)^j*s(n+1,n+1-k+j)*s(n+1,n+1-k-j) = Sum_{j=0..2*(n+1-k)} (-1)^(n+1-k+j)*s(n+1,j)*s(n+1,2*(n+1-k)-j), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 02 2012
E.g.f.: cosh(2/sqrt(t)*asin(sqrt(t)*z/2)) = 1 + z^2/2! + (1 + t)*z^4/4! + (1 + 5*t + 4*t^2)*z^6/6! + ... (see Berndt, p.263 and p.306). - Peter Bala, Aug 29 2012
T(n,m) = (2*(n+1))!*Sum_{k=0..m} ((-1)^k*binomial(n,m-k)*Sum_{i=0..2*k} ((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1, 2*(n-m+1)+i-1))/(2*(n-m+1)+i)!)). - Vladimir Kruchinin, Oct 05 2013

Extensions

There's an error in the last column of Riordan's table (change 46076 to 21076).
More terms from Vladeta Jovovic, Apr 16 2000
Link added and cross-references edited by Johannes W. Meijer, Aug 17 2009
Discussion of Riordan's definition of central factorial numbers added by N. J. A. Sloane, Feb 01 2011

A231531 Imaginary part of Product_{k = 1..n} (k + i), i = sqrt(-1).

Original entry on oeis.org

0, 1, 3, 10, 40, 190, 1050, 6620, 46800, 365300, 3103100, 28269800, 271627200, 2691559000, 26495469000, 238131478000, 1394099824000, -15194495654000, -936096296850000, -29697351895900000, -819329864480400000, -21683886333440500000, -570263312237604700000, -15145164178973569000000, -409583160925827252000000
Offset: 0

Views

Author

Stanislav Sykora, Nov 10 2013

Keywords

Comments

Extension of factorial(n) to factim(n,m) defined by the recurrence a(0)=1, a(n)=a(n-1)*(n+m*i). Hence n! = factim(n,0), while the current sequence shows the imaginary parts of factim(n,1). The real parts are in A231530 and squares of magnitudes are in A101686.
From Peter Bala, Jun 01 2023: (Start)
Compare with A105751(n) = the imaginary part of Product_{k = 0..n} (1 + k*sqrt(-1)). Moll (2012) studied the prime divisors of the terms of A105750 - the real part of Product_{k = 0..n} (1 + k*sqrt(-1)) - and divided the primes into three types. Calculation suggests that a similar division holds in this case.
Type 1: the prime p does not divide any element of the sequence. It appears that for this sequence, unlike in A105750, there are no type 1 primes; i.e., every prime p divides some term of the sequence.
Type 2: primes p such that the p-adic valuation v_p(a(n)) has asymptotically linear behavior. An example is given below.
We conjecture that the set of type 2 primes consists of p = 2 and all primes of the form p == 1 (mod 4). See A002144.
Moll's conjecture 5.5 about type 2 primes extends to this sequence and takes the form:
(i) the 2-adic valuation v_2(a(n)) ~ n/4 as n -> oo.
(ii) for a type 2 prime p, the p-adic valuation v_p(a(n)) ~ n/(p - 1) as n -> oo.
Type 3: primes p such that the sequence of p-adic valuations {v_p(a(n)) : n >= 0} exhibits an oscillatory behavior (this phrase is not precisely defined). An example is given below.
We conjecture that the set of type 3 primes is A002145, primes of the form 4*k + 3. (End)

Examples

			factim(5,1) = -90+190*i. Hence a(5) = 190.
From _Peter Bala_, Jun 01 2023: (Start)
Asymptotic linearity for the type 2 prime p = 5: the sequence of 5-adic valuations [ v_5(a(n)) : n = 1..100] = [0, 0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 11, 11, 11, 13, 11, 12, 12, 13, 12, 12, 13, 13, 13, 14, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 18, 19, 18, 18, 18, 19, 19, 19, 20, 19, 20, 21, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 24, 25, 24, 24, 24, 25, 25, 25].
Note that v_5(a(100)) = 25 = 100/(5 - 1), in line with Moll's conjecture 5.5 above.
Oscillatory behavior for the type 3 prime p = 3: the sequence of 3-adic valuations [ v_3(a(n)) : n = 1..100] = [0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 3, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 3, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 4, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0]. It appears that v_3(a(n)) = 0 unless n == 0 or 2 (mod 6). (End)
		

Crossrefs

Cf. A231530 (real parts), A101686 (squares of magnitudes), A003703, A105750, A105751.
See A242651, A242652 for a pair of similar sequences.

Programs

  • Maple
    seq(simplify(-sinh(Pi)*Im(I!*(n-I)!)/Pi), n=0..19); # Peter Luschny, Oct 23 2015
  • Mathematica
    Table[Im[Pochhammer[1+I, n]], {n, 0, 20}]
    Table[Sum[(-1)^(n+k) StirlingS1[n+1, 2k], {k, 0, (n+1)/2}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
  • PARI
    Factim(nmax, m)={local(a, k); a=vector(nmax); a[1]=1+0*I;
      for (k=2, nmax, a[k]=a[k-1]*(k-1+m*I); ); return(a); }
    a = Factim(1000,1); imag(a)
    
  • PARI
    t(n) = if( n<0, 0, n! * polcoeff(cos(log(1+x+x*O(x^n))), n));
    vector(50, n, n--; (-1)^n*t(n+1)) \\ Altug Alkan, Oct 22 2015
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A231531(n): return sum(stirling(n+1,k<<1,kind=1)*(1 if k&1 else -1) for k in range((n+1>>1)+1)) # Chai Wah Wu, Feb 22 2024

Formula

From Vladimir Reshetnikov, Oct 22 2015: (Start)
a(n) = Im((1+i)_n) = -Re(Gamma(i)*Gamma(n+1-i))*sinh(Pi)/Pi, where (a)_n is the Pochhammer symbol, i=sqrt(-1).
a(n) = (-1)^n*A003703(n+1).
E.g.f.: sin(log(1-x))/(x-1). (End)
P-recursive: a(n) = (2*n - 1)*a(n-1) - (n^2 - 2*n + 2)*a(n-2) with a(0) = 0 and a(1) = 1. - Peter Bala, Jun 01 2023

A255434 Product_{k=0..n} (k^4+1).

Original entry on oeis.org

1, 2, 34, 2788, 716516, 448539016, 581755103752, 1397375759212304, 5725048485492809488, 37567768161803815860256, 375715249386199962418420256, 5501222681512739849730509388352, 114078854746529686263861573186255424, 3258320249270380899068414253345827420288
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 23 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^4 + 1, {k, 0, n}], {n, 0, 15}]
    FoldList[Times,Range[0,15]^4+1] (* Harvey P. Dale, Nov 01 2022 *)
  • PARI
    a(n) = prod(k=1, n, 1+k^4); \\ Michel Marcus, Jan 25 2016

Formula

a(n) ~ 2 * (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)) * n^(4*n+2) / exp(4*n).
a(n) ~ A258870 * (n!)^4. - Vaclav Kotesovec, May 16 2022

A272244 a(n) = Product_{k=0..n} (n^2 + k^2).

Original entry on oeis.org

0, 2, 160, 21060, 4352000, 1313845000, 547573478400, 301758856490000, 212663770808320000, 186659516597629140000, 199722414913149440000000, 255947740845844788169000000, 387074162712817024892928000000, 682170272459193898736228210000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[n^2+k^2,{k,0,n}],{n,0,15}]

Formula

a(n) ~ 2^(n + 1/2) * n^(2*(n+1)) / exp((4-Pi)*n/2).

A255433 a(n) = Product_{k=0..n} (k^3+1).

Original entry on oeis.org

1, 2, 18, 504, 32760, 4127760, 895723920, 308129028480, 158070191610240, 115391239875475200, 115506631115350675200, 153854832645647099366400, 266015005644323834804505600, 584700982406223788900303308800, 1605004196705084300531332582656000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 23 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^3 + 1, {k, 0, n}], {n, 0, 20}]
    FullSimplify[Table[(Cosh[Sqrt[3]*Pi/2] * Gamma[2+n] * Gamma[1/2 - I*Sqrt[3]/2 + n] * Gamma[1/2 + I*Sqrt[3]/2 + n])/Pi, {n, 0, 20}]]
    FoldList[Times,Range[0,20]^3+1] (* Harvey P. Dale, Jul 07 2017 *)
  • PARI
    a(n) = prod(k=1, n, 1+k^3); \\ Michel Marcus, Jan 25 2016

Formula

a(n) ~ 2*sqrt(2*Pi) * cosh(sqrt(3)*Pi/2) * n^(3*n + 3/2) / exp(3*n).
a(n) = 2*A158621(n). - Vaclav Kotesovec, Jul 11 2015

A231530 Real part of Product_{k=1..n} (k+i), where i is the imaginary unit.

Original entry on oeis.org

1, 1, 1, 0, -10, -90, -730, -6160, -55900, -549900, -5864300, -67610400, -839594600, -11186357000, -159300557000, -2416003824000, -38894192662000, -662595375078000, -11911522255750000, -225382826562400000, -4477959179352100000, -93217812901913700000, -2029107997508660900000
Offset: 0

Views

Author

Stanislav Sykora, Nov 10 2013

Keywords

Comments

Extension of factorial(n) to factim(n,m) defined by the recurrence a(0)=1, a(n) = a(n-1)*(n+m*i), where i is the imaginary unit. Hence n! = factim(n,0), while the current sequence lists the real parts of factim(n,1). The imaginary parts are in A231531 and squares of magnitudes are in A101686.

Examples

			factim(5,1) = -90 + 190*i. Hence a(5) = -90.
		

Crossrefs

Cf. A231531 (imaginary parts), A101686 (squares of magnitudes), A009454.
See A242651, A242652 for a pair of similar sequences.

Programs

  • Maple
    seq(simplify(Re(I!*(n-I)!)*sinh(Pi)/Pi),n=0..22); # Peter Luschny, Oct 23 2015
  • Mathematica
    Table[Re[Product[k+I,{k,n}]],{n,0,30}] (* Harvey P. Dale, Aug 04 2016 *)
  • PARI
    Factim(nmax,m)={local(a,k);a=vector(nmax);a[1]=1+0*I;
      for (k=2,nmax,a[k]=a[k-1]*(k-1+m*I););return(a);}
    a = Factim(1000,1); real(a)
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A231530(n): return sum(stirling(n+1,(k<<1)+1,kind=1)*(-1 if k&1 else 1) for k in range((n>>1)+1)) # Chai Wah Wu, Feb 22 2024
  • Sage
    A231530 = lambda n : rising_factorial(1-I, n).real()
    [A231530(n) for n in range(24)] # Peter Luschny, Oct 23 2015
    

Formula

From Peter Luschny, Oct 23 2015: (Start)
a(n) = Re(i!*(n-i)!)*sinh(Pi)/Pi.
a(n) = n!*[x^n](cos(log(1-x))/(1-x)).
a(n) = Sum_{k=0..floor(n/2)} (-1)^(n+k)*Stirling1(n+1,2*k+1).
a(n) = Re(rf(1+i,n)) where rf(k,n) is the rising factorial and i the imaginary unit.
a(n) = (-1)^n*A009454(n+1). (End)

A306760 a(n) = Product_{i=1..n, j=1..n} (i*j + 1).

Original entry on oeis.org

1, 2, 90, 705600, 4105057320000, 52487876090562232320000, 3487017405172854771910634342400000000, 2448893405298238642974553493547144534294528000000000000, 33257039167768610289435138215602132823918399655132218973388800000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 08 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i*j+1, i=1..n), j=1..n):
    seq(a(n), n=0..9);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[i*j + 1, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
    Table[n!^(2*n) * Product[Binomial[n + 1/j, n], {j, 1, n}], {n, 1, 10}]

Formula

a(n) ~ c * n^(n*(2*n+1) + 2*gamma) * (2*Pi)^n * exp(1/6 + log(n)^2 - 2*n^2), where c = 1/A306765 and gamma is the Euler-Mascheroni constant A001620.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A269944 Triangle read by rows, Stirling cycle numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + (n-1)^2*T(n-1, k), for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 5, 1, 0, 36, 49, 14, 1, 0, 576, 820, 273, 30, 1, 0, 14400, 21076, 7645, 1023, 55, 1, 0, 518400, 773136, 296296, 44473, 3003, 91, 1, 0, 25401600, 38402064, 15291640, 2475473, 191620, 7462, 140, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2016

Keywords

Comments

Also known as central factorial numbers |t(2*n, 2*k)| (cf. A008955).
The analog for the Stirling set numbers is A269945.

Examples

			Triangle starts:
  [1]
  [0,     1]
  [0,     1,     1]
  [0,     4,     5,    1]
  [0,    36,    49,   14,    1]
  [0,   576,   820,  273,   30,  1]
  [0, 14400, 21076, 7645, 1023, 55, 1]
		

Crossrefs

Variants: A204579 (signed, row 0 missing), A008955.
Cf. A007318 (order 0), A132393 (order 1), A269947 (order 3).
Cf. A000330 (subdiagonal), A001044 (column 1), A101686 (row sums), A269945 (Stirling set), A269941 (P-transform).

Programs

  • Maple
    T := proc(n, k) option remember; if n=k then return 1 fi; if k<0 or k>n then return 0 fi; T(n-1, k-1)+(n-1)^2*T(n-1, k) end: seq(seq(T(n, k), k=0..n), n=0..8);
    # Alternatively with the P-transform (cf. A269941):
    A269944_row := n -> PTrans(n, n->`if`(n=1, 1, (n-1)^2/(n*(4*n-2))), (n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269944_row(n)), n=0..8);
    # From Peter Luschny, Feb 29 2024: (Start)
    # Computed as the coefficients of polynomials:
    P := (x, n) -> local j; mul((j - x)*(j + x), j = 0..n-1):
    T := (n, k) -> (-1)^k*coeff(P(x, n), x, 2*k):
    for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
    # Alternative, using the exponential generating function:
    egf := cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)):
    ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
    Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, n-k), k = 0..n):
    seq(print(Trow(n)), n = 0..9);  # (End)
    # Alternative, row polynomials:
    rowpoly := n -> pochhammer(-sqrt(x), n) * pochhammer(sqrt(x), n):
    row := n -> local k; seq((-1)^k*coeff(expand(rowpoly(n)), x, k), k = 0..n):
    seq(print(row(n)), n = 0..6);  # Peter Luschny, Aug 03 2024
  • Mathematica
    T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + (n - 1)^2*T[n - 1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
    (* Jean-François Alcover, Jul 25 2019 *)
  • Sage
    stircycle2 = lambda n: 1 if n == 1 else (n-1)^2/(n*(4*n-2))
    norm = lambda n,k: (-1)^k*factorial(2*n)/factorial(2*k)
    M = PtransMatrix(7, stircycle2, norm)
    for m in M: print(m)

Formula

T(n,k) = (-1)^k*((2*n)! / (2*k)!)*P[n, k](s(n)) where P is the P-transform and s(n) = (n - 1)^2 / (n*(4*n - 2)). The P-transform is defined in the link. See the Sage and Maple implementations below.
T(n, 1) = ((n - 1)!)^2 for n >= 1 (cf. A001044).
T(n, n-1) = n*(n - 1)*(2*n - 1)/6 for n >= 1 (cf. A000330).
Row sums: Product_{k=1..n} ((k - 1)^2 + 1) for n >= 0 (cf. A101686).
From Fabián Pereyra, Apr 25 2022: (Start)
T(n,k) = (-1)^(n-k)*Sum_{j=2*k..2*n} Stirling1(2*n,j)*binomial(j,2*k)*(n-1)^(j-2*k).
T(n,k) = Sum_{j=0..2*k} (-1)^(j - k)*Stirling1(n, j)*Stirling1(n, 2*k - j). (End)
From Peter Luschny, Feb 29 2024: (Start)
T(n, k) = (-1)^k*[x^(2*k)] P(x, n) where P(x, n) = Product_{j=0..n-1} (j-x)*(j+x).
T(n, k) = (2*n)!*[t^(n-k)] [x^(2*n)] cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)). (End)
T(n, k) = (-1)^k*[x^k] Pochhammer(-sqrt(x), n) * Pochhammer(sqrt(x), n). - Peter Luschny, Aug 03 2024

A324443 a(n) = Product_{i=1..n, j=1..n} (1 + i^2 + j^2).

Original entry on oeis.org

1, 3, 972, 437987088, 1396064690700615936, 100943980553724942717460016640000, 408685260379151918936869901376463191556211834880000, 193581283410907012468703321819613695893448022144552623141894180044800000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2019

Keywords

Comments

Product_{i>=1, j>=1} (1 + 1/(i^2 + j^2)) is divergent.

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(1+i^2+j^2, i=1..n), j=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[1 + i^2 + j^2, {i, 1, n}, {j, 1, n}], {n, 1, 10}]

Formula

a(n) ~ c * 2^(n*(n+1)) * exp(Pi*n*(n+1)/2 - 3*n^2) * n^(2*n^2 + (Pi - 1)/2), where c = A306398 = 0.1740394919107672354475619059102344818913844938434521480869...
a(n) / A324403(n) ~ d * n^(Pi/2), where d = A306398 * 2^(3/4) * exp(-Pi/12) * Pi^(1/4) * Gamma(3/4) = 0.36753062884677326134620846786416595535234038999313...

Extensions

a(0)=1 prepened by Alois P. Heinz, Jun 24 2023

A255435 Product_{k=0..n} (k^5 + 1).

Original entry on oeis.org

1, 2, 66, 16104, 16506600, 51599631600, 401290334953200, 6744887949893385600, 221023233230056352726400, 13051421922234827628493920000, 1305155243645404997677020493920000, 210197862299579765685879504586803840000, 52304164669591331834914454764848159918720000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 23 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^5 + 1, {k, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = prod(k=1, n, 1+k^5); \\ Michel Marcus, Jan 25 2016

Formula

a(n) ~ c * n^(5*n+5/2) / exp(5*n), where c = 4 * sqrt(2) * Pi^(5/2) / abs(Gamma(3/4 + sqrt(5)/4 + i*sqrt(5/8 + sqrt(5)/8)) * Gamma(3/4 - sqrt(5)/4 + i*sqrt(5/8 - sqrt(5)/8)))^2 = 205.260576646551853296... .
Showing 1-10 of 30 results. Next