cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A101686 a(n) = Product_{i=1..n} (i^2 + 1).

Original entry on oeis.org

1, 2, 10, 100, 1700, 44200, 1635400, 81770000, 5315050000, 435834100000, 44019244100000, 5370347780200000, 778700428129000000, 132379072781930000000, 26078677338040210000000, 5893781078397087460000000, 1514701737148051477220000000
Offset: 0

Views

Author

Ralf Stephan, Dec 13 2004

Keywords

Comments

Sum of all coefficients in Product_{k=0..n} (x + k^2).
Row sums of triangle of central factorial numbers (A008955).
"HANOWA" is a matrix whose eigenvalues lie on a vertical line. It is an N X N matrix with 2 X 2 blocks with identity matrices in the upper left and lower right blocks and diagonal matrices containing the first N integers in the upper right and lower left blocks. In MATLAB, the following code generates the sequence... for n=0:2:TERMS*2 det(gallery('hanowa',n)) end. - Paul Max Payton, Mar 31 2005
Cilleruelo shows that a(n) is a square only for n = 0 and 3. - Charles R Greathouse IV, Aug 27 2008
a(n) = A231530(n)^2 + A231531(n)^2. - Stanislav Sykora, Nov 10 2013

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 559-561, Section 147. - N. J. A. Sloane, May 29 2014

Crossrefs

Equals 2 * A051893(n+1), n>0. Cf. A156648.

Programs

  • Maple
    p := n -> mul(x^2+1, x=0..n):
    seq(p(i), i=0..14); # Gary Detlefs, Jun 03 2010
  • Mathematica
    Table[Product[k^2+1,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Nov 11 2013 *)
    Table[Pochhammer[I, n + 1] Pochhammer[-I, n + 1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
    Table[Abs[Pochhammer[1 + I, n]]^2, {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2016 *)
  • PARI
    a(n)=prod(k=1,n,k^2+1) \\ Charles R Greathouse IV, Aug 27 2008
    
  • PARI
    {a(n)=if(n==0, 1, 1-polcoeff(sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, 1+j^2*x+x*O(x^n))), n))} \\ Paul D. Hanna, Jan 07 2013
    
  • Python
    from math import prod
    def A101686(n): return prod(i**2+1 for i in range(1,n+1)) # Chai Wah Wu, Feb 22 2024

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^2*x). - Paul D. Hanna, Jan 07 2013
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - ((k+1)^2+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
a(n) ~ (n!)^2 * sinh(Pi)/Pi. - Vaclav Kotesovec, Nov 11 2013
From Vladimir Reshetnikov, Oct 25 2015: (Start)
a(n) = Gamma(n+1+i)*Gamma(n+1-i)*sinh(Pi)/Pi.
a(n) ~ 2*exp(-2*n)*n^(2*n+1)*sinh(Pi).
G.f. for 1/a(n): hypergeom([1], [1-i, 1+i], x).
E.g.f. for a(n)/n!: hypergeom([1-i, 1+i], [1], x), where i=sqrt(-1).
D-finite with recurrence: a(0) = 1, a(n) = (n^2+1)*a(n-1). (End)
a(n+3)/a(n+2) - 2 a(n+2)/a(n+1) + a(n+1)/a(n) = 2. - Robert Israel, Oct 25 2015
a(n) = A003703(n+1)^2 + A009454(n+1)^2. - Vladimir Reshetnikov, Oct 15 2016
a(n) = A105750(n)^2 + A105751(n)^2. - Ridouane Oudra, Dec 15 2021

Extensions

More terms from Charles R Greathouse IV, Aug 27 2008
Simpler definition from Gary Detlefs, Jun 03 2010
Entry revised by N. J. A. Sloane, Dec 22 2012
Minor edits by Vaclav Kotesovec, Mar 13 2015

A255433 a(n) = Product_{k=0..n} (k^3+1).

Original entry on oeis.org

1, 2, 18, 504, 32760, 4127760, 895723920, 308129028480, 158070191610240, 115391239875475200, 115506631115350675200, 153854832645647099366400, 266015005644323834804505600, 584700982406223788900303308800, 1605004196705084300531332582656000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 23 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^3 + 1, {k, 0, n}], {n, 0, 20}]
    FullSimplify[Table[(Cosh[Sqrt[3]*Pi/2] * Gamma[2+n] * Gamma[1/2 - I*Sqrt[3]/2 + n] * Gamma[1/2 + I*Sqrt[3]/2 + n])/Pi, {n, 0, 20}]]
    FoldList[Times,Range[0,20]^3+1] (* Harvey P. Dale, Jul 07 2017 *)
  • PARI
    a(n) = prod(k=1, n, 1+k^3); \\ Michel Marcus, Jan 25 2016

Formula

a(n) ~ 2*sqrt(2*Pi) * cosh(sqrt(3)*Pi/2) * n^(3*n + 3/2) / exp(3*n).
a(n) = 2*A158621(n). - Vaclav Kotesovec, Jul 11 2015

A272247 a(n) = Product_{k=0..n} (n^4 + k^4).

Original entry on oeis.org

0, 2, 8704, 104372388, 3087748038656, 194985808028125000, 23467500289618753093632, 4938279594477505466022892304, 1699491802948673617630927695904768, 907214902722906584628050661111614570016, 719684491044699824651608981274624000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[n^4+k^4,{k,0,n}],{n,0,10}]

Formula

a(n) ~ 2^(n+1/2) * (1+sqrt(2))^(sqrt(2)*n) * n^(4*n + 4) / exp((4 - Pi/sqrt(2))*n).

A255435 Product_{k=0..n} (k^5 + 1).

Original entry on oeis.org

1, 2, 66, 16104, 16506600, 51599631600, 401290334953200, 6744887949893385600, 221023233230056352726400, 13051421922234827628493920000, 1305155243645404997677020493920000, 210197862299579765685879504586803840000, 52304164669591331834914454764848159918720000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 23 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^5 + 1, {k, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = prod(k=1, n, 1+k^5); \\ Michel Marcus, Jan 25 2016

Formula

a(n) ~ c * n^(5*n+5/2) / exp(5*n), where c = 4 * sqrt(2) * Pi^(5/2) / abs(Gamma(3/4 + sqrt(5)/4 + i*sqrt(5/8 + sqrt(5)/8)) * Gamma(3/4 - sqrt(5)/4 + i*sqrt(5/8 - sqrt(5)/8)))^2 = 205.260576646551853296... .

A375841 a(n) = Product_{k=0..n} (k^4 + n).

Original entry on oeis.org

0, 2, 108, 19152, 8840000, 8908817400, 17303456226672, 59111538137501696, 331331804053754904576, 2885800103371503562500000, 37384163240259410286768056000, 694933775143924511454539020849152, 17989643936954432911290280974476623872, 632268529759009258574304284235050340614528
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^4 + n, {k, 0, n}], {n, 0, 15}]

Formula

a(n) ~ n^(4*n + 5/2) / exp(4*n - Pi*sqrt(2)*n^(1/4)).

A144663 Decimal expansion of Product_{n>=2} (n^4-1)/(n^4+1).

Original entry on oeis.org

8, 4, 8, 0, 5, 4, 0, 4, 9, 3, 5, 2, 9, 0, 0, 3, 9, 2, 1, 2, 9, 6, 5, 0, 1, 8, 3, 4, 0, 5, 0, 0, 7, 7, 0, 5, 8, 4, 7, 9, 8, 7, 4, 8, 6, 8, 8, 4, 7, 1, 7, 6, 6, 6, 4, 3, 0, 6, 9, 6, 4, 5, 3, 8, 0, 6, 6, 1, 3, 5, 7, 2, 8, 5, 5, 5, 5, 4, 4, 1, 2, 7, 1, 3, 6, 7, 6, 6, 3, 7, 6, 7, 3, 6, 9, 0, 1, 2, 5, 2, 9, 5, 8, 7, 6
Offset: 0

Views

Author

R. J. Mathar, Feb 01 2009

Keywords

Examples

			0.8480540493529003921296501834...
		

Crossrefs

Programs

  • Maple
    Digits := 120 :
    m := 1:
    for r from 2 to 10 do
    omega := cos(Pi/r)+I*sin(Pi/r) :
    x := (-1)^(m+1)*2*m*m!/r*mul( GAMMA(-m*omega^j)^(-(-1)^j),j=1..2*r-1) ;
    x := Re(evalf(x)) ;
    print(r,x) ;
    od:
  • Mathematica
    RealDigits[ -1/2*Pi*Csc[(-1)^(1/4)*Pi]*Csc[(-1)^(3/4)*Pi]*Sinh[Pi] // Re, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
    RealDigits[Re[N[Product[(n^4 - 1)/(n^4 + 1), {n, 2, Infinity}], 110]]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    Pi*sinh(Pi)/(cosh(Pi*sqrt(2))-cos(Pi*sqrt(2))) \\ Michel Marcus, Sep 07 2020

Formula

Equals Pi*sinh(Pi) / (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)). - Vaclav Kotesovec, Dec 08 2015

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A256020 a(n) = Sum_{i=1..n-1} (i^4 * a(i)), a(1)=1.

Original entry on oeis.org

1, 1, 17, 1394, 358258, 224269508, 290877551876, 698687879606152, 2862524242746404744, 18783884080901907930128, 187857624693099981209210128, 2750611340756369924865254694176, 57039427373264843131930786593127712, 1629160124635190449534207126672913710144
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 13 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Clear[a]; a[1]=1; a[n_]:= a[n] = Sum[i^4*a[i],{i,1,n-1}]; Table[a[n],{n,1,15}]
    Flatten[{1,1, Table[Product[(i^4 + 1), {i,2,n-1}],{n,3,15}]}]
    Join[{1},FoldList[Times,Range[15]^4+1]/2] (* Harvey P. Dale, Jul 29 2018 *)

Formula

a(n) = Product_{i=2..n-1} (i^4 + 1), for n>2.
a(n) ~ (cosh(Pi/sqrt(2))^2 * sin(Pi/sqrt(2))^2 + cos(Pi/sqrt(2))^2 * sinh(Pi/sqrt(2))^2) / (2*Pi^2) * ((n-1)!)^4.
a(n) = A255434(n-1)/2.

A354051 Decimal expansion of Sum_{k>=0} 1 / (k^4 + 1).

Original entry on oeis.org

1, 5, 7, 8, 4, 7, 7, 5, 7, 9, 6, 6, 7, 1, 3, 6, 8, 3, 8, 3, 1, 8, 0, 2, 2, 1, 9, 3, 2, 4, 5, 7, 1, 9, 2, 3, 5, 0, 4, 6, 6, 7, 2, 2, 1, 7, 3, 2, 7, 2, 9, 1, 3, 2, 7, 5, 8, 7, 4, 8, 6, 6, 4, 5, 7, 9, 3, 8, 0, 8, 4, 4, 8, 0, 6, 1, 6, 8, 1, 1, 1, 7, 4, 5, 7, 3, 1, 9, 4, 3, 5, 4, 1, 6, 6, 6, 2, 8, 6, 3, 8, 3, 1, 6, 6
Offset: 1

Views

Author

Vaclav Kotesovec, May 16 2022, following a suggestion from Bernard Schott

Keywords

Comments

Apart from leading digits the same as A256920. - R. J. Mathar, May 20 2022

Examples

			1.578477579667136838318022193245719235046672217327291327587486645793808...
		

Crossrefs

Programs

  • Maple
    evalf(1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))), 105);
  • Mathematica
    RealDigits[Chop[N[Sum[1/(k^4 + 1), {k, 0, Infinity}], 105]]][[1]]
  • PARI
    sumpos(k=0, 1/(k^4 + 1))

Formula

Equals 1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))).

A274306 a(n) = Product_{k=1..n} (4*k^4+1).

Original entry on oeis.org

1, 5, 325, 105625, 108265625, 270772328125, 1403954521328125, 13484983177356640625, 220951449360988556640625, 5798870788479144669033203125, 231960630409954265905997158203125, 13584774319958971582784723570166015625
Offset: 0

Views

Author

N. J. A. Sloane, Jun 20 2016

Keywords

Crossrefs

For squares in this sequence see A274307.
Cf. A255434.

Programs

  • Mathematica
    Table[Product[4*k^4+1, {k,1,n}], {n, 0, 15}] (* Vaclav Kotesovec, Oct 10 2016 *)
  • PARI
    a(n) = prod(k=1, n, 4*k^4+1); \\ Michel Marcus, Oct 10 2016

Formula

a(n) ~ (1 + cosh(Pi)) * 2^(2*n + 2) * n^(4*n + 2) / exp(4*n). - Vaclav Kotesovec, Oct 10 2016

A354054 a(n) = Product_{k=0..n} (k^6 + 1).

Original entry on oeis.org

1, 2, 130, 94900, 388805300, 6075471617800, 283463279271694600, 33349454806314869690000, 8742392830201411514885050000, 4646074730467898538293540742100000, 4646079376542629006192079035640742100000, 8230817672466612927467651920537784356160200000
Offset: 0

Views

Author

Vaclav Kotesovec, May 16 2022

Keywords

Crossrefs

Programs

  • Maple
    A354054 := proc(n)
        mul( k^6+1,k=0..n) ;
    end proc:
    seq(A354054(n),n=0..40) ; # R. J. Mathar, Jul 17 2023
  • Mathematica
    Table[Product[k^6 + 1, {k, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = prod(k=1, n, k^6+1);

Formula

a(n) ~ (2*sinh(2*Pi) - 4*sinh(Pi)*cos(sqrt(3)*Pi)) * n^(6*n + 3) / exp(6*n).
a(n) ~ A258871 * (n!)^6.
Showing 1-10 of 11 results. Next