cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354052 Decimal expansion of Sum_{k>=0} 1 / (k^6 + 1).

Original entry on oeis.org

1, 5, 1, 7, 1, 0, 0, 7, 3, 4, 0, 3, 3, 2, 1, 6, 4, 2, 6, 1, 5, 2, 9, 0, 7, 6, 4, 4, 9, 0, 2, 4, 1, 3, 8, 5, 8, 0, 6, 2, 2, 1, 1, 3, 2, 2, 5, 2, 9, 8, 4, 4, 6, 7, 2, 8, 4, 7, 6, 3, 4, 8, 9, 9, 0, 3, 7, 9, 0, 1, 3, 5, 0, 5, 3, 5, 7, 9, 8, 7, 2, 0, 0, 7, 8, 4, 3, 6, 9, 3, 6, 9, 3, 3, 0, 0, 6, 4, 3, 7, 0, 6, 6, 6, 4
Offset: 1

Views

Author

Vaclav Kotesovec, May 16 2022

Keywords

Examples

			1.517100734033216426152907644902413858062211322529844672847634899037901...
		

Crossrefs

Programs

  • Maple
    evalf(1/2 + (coth(Pi) + (sinh(Pi) + sqrt(3)*sin(sqrt(3)*Pi)) / (cosh(Pi) - cos(sqrt(3)*Pi)))*Pi/6, 100);
  • Mathematica
    RealDigits[Chop[N[Sum[1/(k^6 + 1), {k, 0, Infinity}], 105]]][[1]]
  • PARI
    sumpos(k=0, 1/(k^6 + 1))

Formula

Equals 1/2 + (coth(Pi) + (sinh(Pi) + sqrt(3)*sin(sqrt(3)*Pi)) / (cosh(Pi) - cos(sqrt(3)*Pi)))*Pi/6.
Equal 3/2 + Sum_{k>=1} (-1)^(k+1) * (zeta(6*k)-1). - Amiram Eldar, May 20 2022

A354053 Decimal expansion of Sum_{k>=0} 1 / (k^8 + 1).

Original entry on oeis.org

1, 5, 0, 4, 0, 6, 2, 1, 3, 3, 3, 1, 4, 7, 9, 9, 5, 1, 1, 2, 9, 2, 9, 0, 5, 4, 1, 7, 4, 5, 1, 1, 2, 7, 0, 7, 5, 2, 4, 5, 4, 1, 4, 3, 6, 3, 8, 2, 0, 3, 5, 1, 9, 7, 5, 4, 5, 8, 6, 3, 5, 3, 5, 7, 8, 1, 8, 8, 1, 2, 6, 9, 5, 1, 6, 4, 5, 6, 6, 3, 3, 4, 0, 7, 2, 0, 0, 6, 6, 1, 3, 9, 8, 5, 1, 6, 8, 4, 2, 8, 1, 8, 2, 4, 3
Offset: 1

Views

Author

Vaclav Kotesovec, May 16 2022

Keywords

Examples

			1.504062133314799511292905417451127075245414363820351975458635357818812...
		

Crossrefs

Programs

  • Maple
    evalf(1/2 + ((sqrt(2 + sqrt(2))*sinh(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sin(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi)) + (sqrt(2 + sqrt(2))*sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi))) * Pi/8, 100);
  • Mathematica
    RealDigits[Chop[N[Sum[1/(k^8 + 1), {k, 0, Infinity}], 105]]][[1]]
  • PARI
    sumpos(k=0, 1/(k^8 + 1))

Formula

Equals 1/2 + ((sqrt(2 + sqrt(2))*sinh(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sin(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi)) + (sqrt(2 + sqrt(2))*sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi))) * Pi/8.
Equal 3/2 + Sum_{k>=1} (-1)^(k+1) * (zeta(8*k)-1). - Amiram Eldar, May 20 2022

A354004 Decimal expansion of Sum_{n>0} n^2 / (n^4 + 1).

Original entry on oeis.org

1, 1, 2, 8, 5, 2, 7, 9, 2, 4, 7, 2, 4, 3, 1, 0, 0, 8, 5, 4, 1, 2, 0, 5, 8, 6, 3, 3, 7, 4, 9, 7, 2, 8, 4, 3, 3, 6, 8, 6, 4, 2, 6, 7, 9, 8, 3, 9, 2, 6, 8, 1, 8, 3, 4, 9, 5, 6, 6, 3, 3, 9, 4, 2, 2, 5, 6, 1, 2, 5, 5, 8, 8, 5, 9, 0, 5, 4, 1, 3, 4, 2, 5, 8, 5, 0, 5, 4, 1, 5, 0, 3, 2, 6, 0, 4
Offset: 1

Views

Author

Bernard Schott, May 13 2022

Keywords

Comments

When u(n) is a sequence of positive terms and Sum_{n>0} u(n) converges, if v(n) = u(n) / (1 + u(n)^2), then Sum_{n>0} v(n) also converges.
The converse is false; for example, when u(n) = n^2 then Sum_{n>0} u(n) = oo, but Sum_{n>0} n^2 / (n^4 + 1) is convergent and the limit of this series v(n) is this constant.
Note that if u(n) = 1 / n^2, n>0, then also v(n) = n^2 / (n^4 + 1).

Examples

			1.12852792472431008541205863...
		

References

  • Jean-Marie Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.3 pp. 249 and 444.

Crossrefs

Programs

  • Maple
    evalf(sum(n^2/(1+n^4),n=1..infinity),110);
    evalf(Pi*(sin(sqrt(2)*Pi) - sinh(sqrt(2)*Pi)) / (2*sqrt(2)*(cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))), 121); # Vaclav Kotesovec, May 16 2022
  • Mathematica
    RealDigits[Re[Sum[n^2/(n^4 + 1), {n, 1, Infinity}]], 10, 100][[1]] (* Amiram Eldar, May 13 2022 *)
  • PARI
    sumpos(n=1, n^2/(n^4 + 1)) \\ Michel Marcus, May 16 2022

Formula

Equals Pi*(sin(sqrt(2)*Pi) - sinh(sqrt(2)*Pi)) / (2*sqrt(2)*(cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))). - Vaclav Kotesovec, May 16 2022
Equals 1/2 + Sum_{j>=0} (-1)^j*Zeta(2+4*j) = 1/2 + A013661 - A013664 + A013668 -.... - R. J. Mathar, May 20 2022
Showing 1-3 of 3 results.