cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354051 Decimal expansion of Sum_{k>=0} 1 / (k^4 + 1).

Original entry on oeis.org

1, 5, 7, 8, 4, 7, 7, 5, 7, 9, 6, 6, 7, 1, 3, 6, 8, 3, 8, 3, 1, 8, 0, 2, 2, 1, 9, 3, 2, 4, 5, 7, 1, 9, 2, 3, 5, 0, 4, 6, 6, 7, 2, 2, 1, 7, 3, 2, 7, 2, 9, 1, 3, 2, 7, 5, 8, 7, 4, 8, 6, 6, 4, 5, 7, 9, 3, 8, 0, 8, 4, 4, 8, 0, 6, 1, 6, 8, 1, 1, 1, 7, 4, 5, 7, 3, 1, 9, 4, 3, 5, 4, 1, 6, 6, 6, 2, 8, 6, 3, 8, 3, 1, 6, 6
Offset: 1

Views

Author

Vaclav Kotesovec, May 16 2022, following a suggestion from Bernard Schott

Keywords

Comments

Apart from leading digits the same as A256920. - R. J. Mathar, May 20 2022

Examples

			1.578477579667136838318022193245719235046672217327291327587486645793808...
		

Crossrefs

Programs

  • Maple
    evalf(1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))), 105);
  • Mathematica
    RealDigits[Chop[N[Sum[1/(k^4 + 1), {k, 0, Infinity}], 105]]][[1]]
  • PARI
    sumpos(k=0, 1/(k^4 + 1))

Formula

Equals 1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))).

A354053 Decimal expansion of Sum_{k>=0} 1 / (k^8 + 1).

Original entry on oeis.org

1, 5, 0, 4, 0, 6, 2, 1, 3, 3, 3, 1, 4, 7, 9, 9, 5, 1, 1, 2, 9, 2, 9, 0, 5, 4, 1, 7, 4, 5, 1, 1, 2, 7, 0, 7, 5, 2, 4, 5, 4, 1, 4, 3, 6, 3, 8, 2, 0, 3, 5, 1, 9, 7, 5, 4, 5, 8, 6, 3, 5, 3, 5, 7, 8, 1, 8, 8, 1, 2, 6, 9, 5, 1, 6, 4, 5, 6, 6, 3, 3, 4, 0, 7, 2, 0, 0, 6, 6, 1, 3, 9, 8, 5, 1, 6, 8, 4, 2, 8, 1, 8, 2, 4, 3
Offset: 1

Views

Author

Vaclav Kotesovec, May 16 2022

Keywords

Examples

			1.504062133314799511292905417451127075245414363820351975458635357818812...
		

Crossrefs

Programs

  • Maple
    evalf(1/2 + ((sqrt(2 + sqrt(2))*sinh(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sin(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi)) + (sqrt(2 + sqrt(2))*sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi))) * Pi/8, 100);
  • Mathematica
    RealDigits[Chop[N[Sum[1/(k^8 + 1), {k, 0, Infinity}], 105]]][[1]]
  • PARI
    sumpos(k=0, 1/(k^8 + 1))

Formula

Equals 1/2 + ((sqrt(2 + sqrt(2))*sinh(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sin(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi)) + (sqrt(2 + sqrt(2))*sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi))) * Pi/8.
Equal 3/2 + Sum_{k>=1} (-1)^(k+1) * (zeta(8*k)-1). - Amiram Eldar, May 20 2022

A354054 a(n) = Product_{k=0..n} (k^6 + 1).

Original entry on oeis.org

1, 2, 130, 94900, 388805300, 6075471617800, 283463279271694600, 33349454806314869690000, 8742392830201411514885050000, 4646074730467898538293540742100000, 4646079376542629006192079035640742100000, 8230817672466612927467651920537784356160200000
Offset: 0

Views

Author

Vaclav Kotesovec, May 16 2022

Keywords

Crossrefs

Programs

  • Maple
    A354054 := proc(n)
        mul( k^6+1,k=0..n) ;
    end proc:
    seq(A354054(n),n=0..40) ; # R. J. Mathar, Jul 17 2023
  • Mathematica
    Table[Product[k^6 + 1, {k, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = prod(k=1, n, k^6+1);

Formula

a(n) ~ (2*sinh(2*Pi) - 4*sinh(Pi)*cos(sqrt(3)*Pi)) * n^(6*n + 3) / exp(6*n).
a(n) ~ A258871 * (n!)^6.
Showing 1-3 of 3 results.